期刊文献+

基于支持向量机的CBERS-02卫星影像信息提取 被引量:2

Information extraction from CBERS-02 remote sensing image using Support Vector Machine
下载PDF
导出
摘要 CBERS卫星是由中国空间技术研究院与巴西空间研究院联合研制的地球资源遥感卫星,CBERS-02卫星数据总体质量比CBERS-01卫星有所提高,本文利用支持向量机方法对CBERS-02卫星影像信息进行提取。研究中首先用6S模式对影像进行大气校正,然后选择RBF为支持向量机方法的核函数,并用交叉验证方法得到影响RBF核函数的两个最佳参数值进行学习完成信息提取,最后将提取结果制作成矢量图。通过研究得出用大气校正后的数据进行信息提取分类精度有所提高;与最大似然法和最小距离法相比,支持向量机方法分类精度较高。通过将研究结果与ETM+影像进行比较得出,CBERS-02卫星影像精度能够满足应用需求并能代替TM/ETM+数据开展研究工作。 The CBERS Program was born from a partnership between Brazil and China in the space technical scientific segment. Data quality of CBERS -02 is evidently higher than CBERS -01. However, until now there are few researches based on the CBERS remote sensing images. This paper extracts information from CBERS -02 remote sensing image using Support Vector Machine. The remote sensing image is atmospherically corrected with 6S mode at first. Then the paper chose Radial Basis Function as the kernel function in support vector machine method and used two best parameters getting from cross - validation method to train the whole training set and compute out the classification result. The classification result was transformed to vector image finally. It can be concluded that the classification overall accuracy will be improved using atmospherically corrected data, and Support Vector Machine method has the higher overall accuracy comparing with the maximum likelihood and minimum distance classification method. By comparing the result with the ETM + image, it suggested that the precision of CBERS -02 image can meet the application demand and TM/ETM + images can be replaced by CBERS - 02 image in research of information extraction.
出处 《测绘科学》 CSCD 北大核心 2008年第5期146-148,共3页 Science of Surveying and Mapping
基金 国土资源大调查基金项目(编号:22003020002)
关键词 CBERS-02卫星 支持向量机 信息提取 CBERS - 02 satellite Support Vector Machine information extraction
  • 相关文献

参考文献22

  • 1Vapnik V N. The Nature of Statistical Learning Theory (Second Edition) [ M]. NewYork: Springer, 2000.
  • 2Cortes C, V Vapnik. Support -vector network [ J]. Machine Learning, 1995, 20 (3): 273 -297.
  • 3Scholkopf B, et al. Input Space Versus Feature Space in Kernel - Based Methods [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (5).
  • 4Chapelle O, P Haffner, V N Vapnik. Support vector machines for histogram - based image classification [ J ]. Neural Networks, IEEE Transactions on, 1999, 10(5).
  • 5Boser B E, I M Guyon, V N Vapnik. A training algo- rithm for optimal margin classifiers [ C ] // in Proceedings of the fifth annual workshop on Computational learning theory, 1992:144 - 152.
  • 6Cristianini N, J Shawe-Taylor,李国正,王猛,曾华军译. An Introduction to Support Vector Machines and Other Kernel- based Learning Methods (支持向量机导论) [M]. 北京:电子工业出版社, 2004.
  • 7Foody G M, A Mathur. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM [J]. Remote Sensing of Environment, 2006, 103 (2):179-189.
  • 8Nemmour H, Y Chibani. Multiple support vector machines for land cover change detection : An application for mapping urban extensions [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61 (2).
  • 9Durbha, S S, R L King, N H Younan. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer [J]. Remote Sensing of Environment, 2007, 107 (1 -2) : 348 -361.
  • 10Zhu G, D G Blumberg. Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel[J].Remote Sensing of Environment, 2002, 80 (2).

二级参考文献22

  • 1亓雪勇,田庆久.光学遥感大气校正研究进展[J].国土资源遥感,2005,17(4):1-6. 被引量:71
  • 2Singh A.Thematic Mapper Radiometric Correction Research and Development Results and Performance,Photogrammetric engineering&Remote Sensing,1985.1379-1383.
  • 3Wegener M.Destriping Multiple Sensor Imagery by Improved Histogram Matching,International Journal of Remote Sensing,1990,(11):859-875 .
  • 4Horn B K P,Woodham R J.Destriping Landsat MSS images by histgram modification.Computer graphics and image processing,1979,10:69-83.
  • 5Weinrdb M P,Xie R,Lienesch J H,er al.Destriping GEOS images by matching empirical distribution functions.Remote Sensing of Environment,1989,29:185-195.
  • 6Richter R. Atmospheric/Topographic Correction for Satellite Imagery. atcor4 user guied, version 3.1[M].2004.
  • 7Asrar G. Theory and Applications of Optical Remote Sensing[M]. J. Wiley, New York, 1989.
  • 8Vermote E, Tanre D, Deuze J L, et al. Second Simulation of the Satellite Signal in the Solar Spectrum (6S). 6S User Guide Version 2[M]. 1997.
  • 9Richter R. Correction of Atmospheric and Topographic Effects for High Spatial Resolution Satellite Imagery [ J ]. Int. J. Remote Sens., 1997,18:1099-1111.
  • 10Kaufman Y J. Atmospheric Effect on Spatial Resolution of Surface Imagery[J]. Appl. Opt, 1984,23:3400-3408.

共引文献44

同被引文献14

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部