期刊文献+

基于梯度相关性的红外微弱目标检测 被引量:4

Detection of infrared small dim targets based on correlation of gradients
原文传递
导出
摘要 提出了一种新的基于空域梯度相关性的图像杂波自适应预测算法。该算法能显著改善微小目标的邻域信杂比(SCNR)。试验证明,本算法相对于已有的多种算法,有着更好的性能。对微弱目标SCNR的增益相对于传统算法提高3dB以上。本文还引入了一种基于统计分析的微小目标检测算法。该算法考虑了微小目标在图像集成时的重叠特性,能在不增加系统运算负荷的情况下,获得更高的检测概率,相对于不考虑重叠特性的算法,在虚警概率小于10-4时,假设重叠系数为3,SCNR为4dB,系统检测概率从小于20%,大幅提高到80%。理论分析及仿真表明,本文提出的检测系统在微小目标检测中,具有很高的实用性。系统在原始信号的邻域信杂比(SCNR)小于0dB的情况下,能有效检测出目标,在采用10帧集成检测,目标像素重叠参数为5的情况下,虚警概率小于10-7,系统检测概率大于80%,虚警概率小于10-4,系统检测概率大于95%。 This paper proposes a novel adaptive prediction algorithm of background clutter based on NACF (normalized auto correlation function) of gradients in neighborhood. The algorithm can improve the SCNR (Signal Clutter Noise Ratio) of small targets evidently. Compared with traditional methods,the gain of SCNR can be improved over 3 dB by this algorithm. And this paper proposes a detecting algorithm of small targets based on statistical analysis,The characteristic of targets overlapped is considered, and a novel method is proposed to get higher probability of detection on same load of system. If the overlapped coefident is 3 ,SCNR is 4 riB,false alarm probability Pfa〈10-4 ,the detection probability PD can be improved from less than 20% to 80%. The theoretic analysis and many simulations verify the validity of the method. The system could detect the small targets when SCNR of original signal is less than 0 dB. If 10 frames are employed to detect,over-lapped coefficient is 5,Pfa〈10^-7 ,PD〉80%;and Pfa〈10^-4 ,PD〉95%.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2008年第9期1214-1219,共6页 Journal of Optoelectronics·Laser
基金 国家"863"高技术计划资助项目(2004AA823120) 国家自然科学基金资助项目(10376005)
关键词 微小运动目标 自适应 空域杂波抑制 多帧检测 small moving target adaptive spatial-temporal clutter suppression multi frame detection
  • 相关文献

参考文献6

二级参考文献31

共引文献54

同被引文献31

  • 1向桂英,艾斯卡尔.艾木都拉,于伟俊,地里木拉提.吐尔逊.基于粒子滤波和数据关联的多目标跟踪算法[J].光电子.激光,2009,20(2):244-247. 被引量:9
  • 2余农,吴常泳,汤心溢,李范鸣.红外目标检测的自适应背景感知算法[J].电子学报,2005,33(2):200-204. 被引量:47
  • 3吴宏刚,李晓峰,陈跃斌,李在铭.空时自适应杂波分类抑制与弱小运动目标检测[J].红外与毫米波学报,2006,25(4):301-305. 被引量:9
  • 4FAN H,WEN C. Two-dimensional adaptive filtering based on projection algorithm [ J ]. IEEE Trans on Signal Processing, 2004,52 (3) :832-838.
  • 5HSIA S C. An edge-oriented spatial interpolation for consecutive block error concealment [ J ]. IEEE Signal Processing Letters, 2004,11 (6) : 577-580.
  • 6GAO Ying-hui, LI Ji-cheng, SHEN Zhen-kang. Detection of moving small target in IR clutter background containing sea and sky areas [ C]//Proc of SPIE Infrared Components and their Applications. Beijing : SPIE Press,2005:341 - 349.
  • 7Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [J]. Communications on Pure and Applied Mathematics, 1989,42 (5) :577-685.
  • 8Osher S, Sethian J A. Fronts propagating with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations[J].Journal of Computational Physics, 1988,79 ( 1 ) : 12- 49.
  • 9Malladi R,Sethian J A,Vemuri B C. Shape modeling with front propagation: A level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17 (2): 158- 175.
  • 10Chart F T, Vese L. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001,10(2) ; 266-277.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部