期刊文献+

算子矩阵:单值扩张性与Browder谱 被引量:2

Operator Matrices:Single Valued Extension Property and Browder Spectrum
下载PDF
导出
摘要 设X,Y是给定的Banach空间,对A∈B(X),B∈B(Y),C∈B(Y,X),以MC记XY上的算子{A C/0 B}.利用局部谱理论的工具给出关于A,B成立σ*(Mc)=σ*(A)∪σ*(B)(σ*∈{αb,σw,σD})的一些充分条件,同时给出例子说明所给的充分条件不同于Djordjevic S.V.,Zguitti H.和Zhang Y.N.等人所给的充分条件. For A ∈ B(X),B ∈ B(Y),C ∈ B(Y,X) , let Mc be the operator defined on X+Y by (A0 CB).Give some sufficient conditions for the equality σ. (Me) = σ. (A) ∪σ. (B) (where σ*. {σb,σw,σD}) to be hold by means of local spectral theory. Also give some examples to illustrate that results are different from the conditions given by Djordjevic S. V. , Zguitti H. and the conditions given by Zhang Y. N..
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期1-4,共4页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10771034) 福建省自然科学基金资助项目(S0650009) 福建省教育厅基金资助项目(JB07047)
关键词 算子矩阵 单值扩张性 Browder谱 operator matrice single valued extension property Browder spectrum
  • 相关文献

参考文献11

  • 1Djordjevic S V, Zguitti H. Essential point spectra of operator matrices through local spectral theory [J]. Journal of Mathematical Analysis and Applications, 2008, 338: 285--291.
  • 2Zhang Y N, Zhong H J, Lin L Q. Browder spectra and essential spectra for operator matrices [J]. Acta Mathematica Sinica,2008, 24: 947--954.
  • 3Benhida C, Zerouali E H, Zguitti H. Spectra of upper triangular operator matrices [J]. Proc Amer Math Soc, 2005, 133:3013--3020.
  • 4Zhang S F, Zhong H J, Jiang Q F. Drazin spetrum of operator matrices on the Banach space [J]. Linear Algebra and Its Application, 2008, 429: 2067--2075.
  • 5钟怀杰.Banach空间结构与算子理想[M].北京:科学出版社,2005.
  • 6Djordjevic S V, Han Y M. A note on Weyl's theorem for operator matrices [J]. PAMS, 2003 (27) : 2543--2547.
  • 7Duggal B P. Upper triangular operators with SVEP: spectral properties [J]. Filomat, 2007 (21): 25--37.
  • 8江樵芬,陈晓玲,钟怀杰.关于算子的黎斯点[J].福建师范大学学报(自然科学版),2006,22(2):5-10. 被引量:2
  • 9Djordjevic S V, Dragan S. Perturbations of spectra of operator matrices [J]. J Operator Theory, 2002 (48) : 467 --486.
  • 10Schmoeger C. On isolated points of the spectrum of a bounded linear operator [J]. Proc Amer Math Soc, 1993 (117): 715--719.

二级参考文献9

  • 1Heuser H.Functional Analysis[M].New York:John Wiley and Sons,1982.
  • 2Mbekhta M.Generalisation de la decoposition de Kato aux operateurs paranormaux et spectraux[J].Glasgow Math.J.,1987(29):159-175.
  • 3Mbekhta M.Sur la theorie spectrale locale et limite des nilpotents[J].Proc.Amer.Math.Soc.,1990(110):621-631.
  • 4Schmoeger C.On isolated points of the spectrum of a bounded linear operator[J].Proc.Amer.Math.Soc.,1993(117):715-719.
  • 5Schmoeger C.A note on meromorphic operators[J].Proc.Amer.Math.Soc.,2005(133):511-518.
  • 6Schechter M.Principles of Functional Analysis[M].New York:Academic Press,1971.
  • 7Gowers W T,Maurey B.The unconditional basic sequence problem[J].J.Amer.Math.Soc.,1993(6):851-874.
  • 8Finch J K.The single-valued extension property on a Banach space[J].Pacific J.Math.,1975(58):61-69.
  • 9钟怀杰.Banach空间结构与算子理想[M].北京:科学出版社,2005.

共引文献3

同被引文献12

  • 1Laursen K B and Neumann M M. An Introduction to Local Spectral Theory. Oxford: Clarendon Press, 2000.
  • 2Aiena P. Fredholm and Local Spectral Theory with Applications to Multipliers. London: Kluwer Academic Publishers, 2004.
  • 3Larsen R. An Introduction to the Theory of Multipliers. Berlin: Springer-Verlag,1971.
  • 4Laustsen N J. Matrix multiplication and composition of operators on the direct sum of an infinite sequence of Banach spaces. Math. Proc. Camb. Phil. Soc., 2001, 121: 165-183.
  • 5Djordjevic S V and Zguitti H. Essential point spectra of operator matrices through local spectral theory. Journal of Mathematical Analysis and Applications, 2008, 338: 285-291.
  • 6Djordjevic S V and Han Y M. A note on Weyl's theorem for operator matrices. Proc. Amer. Math. Soc., 2003, 131: 2543-2547.
  • 7Benhida C, Zerouali E H and Zguitti H. Spectra of upper triangular operator matrices. Proc. Amer. Math. Soc., 2005, 133: 3013-3020.
  • 8Koliha J J and Rakocevic V. Differentiability of the g-Drazin inverse. Studia Mathematica, 2005, 168: 193-203.
  • 9Koliha J J. Isolated spectral points. Proc. Amer. Soc., 1996, 124: 3417-3424.
  • 10Koliha J J. A generalized Drazin inverse. Glasgow Math.J., 1996, 38: 367-381.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部