期刊文献+

基于模糊神经网络和证据理论的结构损伤识别新方法 被引量:3

A new structural damage identification method based on fuzzy neural network and evidential theory
下载PDF
导出
摘要 为了有效利用结构健康监测系统中的多源不确定数据,提高损伤识别的正确率,通过构造模糊神经网络(FNN)分类器,提出了一种新的概率赋值函数构造方法和数据融合损伤识别新方法.该损伤识别方法先对数据预处理,提取有效的特征参数,接着将它作为FNN的输入,构造FNN分类器,最后运用数据融合中的D-S证据理论计算出融合决策结果.为了验证所提方法的有效性,通过一个七层剪切型框架结构的数值模型,分别用单一FNN分类器和数据融合损伤识别方法进行了损伤识别和比较.研究结果表明,本文所提方法比单一决策结果更准确,具有更高的可靠度。 In order to make full use of multi-resource and uncertain data and to improve the damage identification accuracy of the objective from a large structural health monitoring system, a construction method of basic belief assignment function and a new data-fusion damage identification method were proposed in this paper via constructing an FNN model. In this proposed damage identification method, the original data is preprocessed and the feature parameters are extracted. Thus these parameters are regarded as input vectors of an FNN, this FNN classifier is constructed and then decision results were drawn by this model. Finally, the fusion decision-making results are computed and drawn by the data fusion algorithm of D-S evidential theory. A 7-story shear frame numerical model was utilized to validate this proposed method, and a comparison was made between this method and single FNN classifier. The results show that the proposed damage identification method is more exact and reliable than that of single FNN classifier.
作者 姜绍飞 张帅
出处 《地震工程与工程振动》 CSCD 北大核心 2008年第4期139-145,共7页 Earthquake Engineering and Engineering Dynamics
基金 国家自然科学基金项目(50408033) 辽宁高等学校优秀人才计划项目(RC-05-16) 教育部重点(208064)和福建教育厅重点项目
关键词 模糊神经网络 D-S证据理论 数据融合 损伤识别 特征提取 fuzzy neural network D-S evidential theory data fusion damage identification feature extraction
  • 相关文献

参考文献11

  • 1Doebling S W, Farrar C R. The state of the art in structural identification of constructed facilities [ R ]. Los Alamos National Laboratory Report DRAFY, Los Alamos, 1999.
  • 2黄方林,王学敏,陈政清,曾储惠,何旭辉.大型桥梁健康监测研究进展[J].中国铁道科学,2005,26(2):1-7. 被引量:95
  • 3苏羽,赵海,苏威积,王刚.一种基于模糊神经网络的融合故障诊断方法[J].计算机工程,2004,30(17):5-6. 被引量:11
  • 4郭惠勇,张陵,蒋健.不同信息融合方法在结构损伤识别上的应用和分析[J].工程力学,2006,23(1):28-32. 被引量:11
  • 5Jiang S F, Zhang C M, Koh C G. Structural damage detection by integrating data fusion and probabilistic neural network[ J]. Advances in Structural Engineering-An International Journal, 2006,9 (4) :445 - 458.
  • 6Hall D L. Mathematical Techniques in Multi-Sensor Data Fusion[ M]. Boston: Artech House, 1992.
  • 7Gros X E. Applications of NDT data fusion[ M]. Boston : Kluwer Academic Publishers,2001.
  • 8戴亚平 刘征 郁光辉.多传感器数据融合理论及应用[M].北京:北京理工大学出版社,2004..
  • 9倪国强,李勇量,牛丽红.基于神经网络的数据融合技术的新进展[J].北京理工大学学报,2003,23(4):503-508. 被引量:24
  • 10Ni Y Q, Wang B S, Ko J M. Constructing input vectors to neural networks for structural damage identification [ J ]. Smart Materials and Structures, 2002, 11 : 825 - 833.

二级参考文献63

共引文献149

同被引文献171

引证文献3

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部