期刊文献+

超图嵌入带权重圈的一个2-近似算法 被引量:1

A 2-approximation algorithm for an embedded hypergraph in a weighted cycle
下载PDF
导出
摘要 超图嵌入带权圈(HEWC)问题就是把超图的超边以路的形式嵌入一个带权圈,使得圈上任何带权连接边的最大阻塞最小。这个问题的一个简单形式是图嵌入带权圈(GEWC),即把普通图的边以路的形式嵌入一个带权圈。HEWC问题第一次被归结为一个整数线性规划问题,并且利用LP的放松问题和有界启发得到一个近似解。然后设计了一个非常简单有用的可以和LP近似算法得到一样好的近似解的线性时间近似算法。 The problem of hypergraph embedding in a weighted cycle (HEWC) is to embed the hyperedges of a hypergraph as the paths in a weighted cycle, such that the maximum congestion of any weighted link in the cycle is minimized. A simple version of this problem is graph embedding in a weighted cycle(GEWC) that embeds the edges of a normal graph as the paths in a weighted cycle. The HEWC problem was formulated as an integer linear program, and an approximation solution was obtained by using LP- relation and rounding heuristic. Then, a linear timne approximation algorithm was developed, which also provided a solution with the same worst case approximation bounds as LP-approximation.
作者 杨朝霞
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第8期11-13,18,共4页 Journal of Shandong University(Natural Science)
关键词 最小阻塞 超图嵌入 带权圈 近似算法 minimum congestion hypergraph embedding weighted cycle approximation algorithm
  • 相关文献

参考文献5

  • 1GANLEY J L, COHOON J P. Minimum-congestion hypergraph embedding in a cycle[J]. IEEE Trans Computer, 1997, 46(5) :600-602.
  • 2GONZALEZ T. Improved approximation algorithm for embedding hyperedges in a cycle[J]. Inform Process Lett, 1998, 67:267-271.
  • 3GU Q P, WANG Y. Efficient algorithm for embedding hypergraph in a cycle[ M]// Lecture Notes in Computer Science. Berlin: Springer, 2003 : 85-94.
  • 4DENG X, LI G. A PTAS for embedding hypergraph in a cycle[J]. ICALP, 2004:433-444.
  • 5LEE S L, HO H J. Algorithms and complexity for weighted hypergraph embedding in a cycle[M]//Proc of the 1st International Symposium on Cyber World. Washington: IEEE Computer Society, 2002.

同被引文献16

  • 1JOHNSON W B, LINDENSTRAUSS J. Extensions of Lipschitz mappings into a Hilbert space[J]. Contemporary Mathemat- ics, 1984, 26 : 189-206.
  • 2GRAHAM R L, WINKLER P M. On isometric embeddings of graphs[ J]. Transactions of the American Mathematical Socie- ty, 1985, 288(2) :527-536.
  • 3LINIAL N, LONDON E, RABINOVICH Y. The geometry of graphs and some of its algorithmic applications[ J]. Combina- torica, 1995, 15(2):215-245.
  • 4CAI L, CORNEIL D G. Tree spanners[ J]. SIAM Journal on Discrete Mathematics, 1995, 8(3) :359-387.
  • 5BARTAL Y. Probabilistic approximation of metric spaces and its algorithmic applications[ C ]//Proceeding of the 37th Annual Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 1996: 184-193.
  • 6BARTAL Y. On approximating arbitrary metrics by tree metrics[ C ]// Proceeding of the 30th Annual ACM Symposium on Theory of Computing. New York: ACM Press, 1998: 161-168.
  • 7FAKCHAROENPHOL J, RAO S, TALWAR K. A tight bound on approximating arbitrary metrics by tree metrics[ J]. Journal of Computer and System Sciences, 2004, 69(3) :485-497.
  • 8CALINESCU G, KARLOFF H, RABANI Y. Approximation algorithms for the 0-extension problem [ J]. SIAM Joumal on Computing, 2004, 34 ( 2 ) : 358-372.
  • 9FAKCHAROENPHOL J, HARRELSON C, RAO S, et al. An improved approximation algorithm for the 0-extension problem [C]//Proceeding of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM Press, 2003: 257- 265.
  • 10LINIAL N, SAKS M. Low diameter graph decompositions [J ]. Combinatorica, 1993, 13 (4) :441-454.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部