期刊文献+

基于二进制表示的事务属性挖掘方法

Mining Approach for Transaction Attribute Based on Binary Expression
下载PDF
导出
摘要 在关联规则数据挖掘中采用二进制系统易于产生冗余模式。该文提出一种基于二进制事务属性层次划分的两级数据挖掘方法,即MLADM算法。该算法通过高层次模式获取最大可能频繁模式集,在低层次模式中对其进行验证,优先获得长频繁模式。实验结果表明,该算法可以在密集数据集中有效挖掘长模式并避免冗余模式。 Using the method of binary system in association rule data mining may produce some redundancy patterns. This paper proposes an algorithm based on two levels data mining of binary transaction attributes, namely MLADM algorithm. It gets maximum possible frequent patterns set on high level patterns, and validates these patterns on low level patterns to get first long frequent patterns. The experiment on real datasets proves that MLADM is effective on mining long patterns on dense dataset and can avoid producing redundancy patterns.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第18期48-50,共3页 Computer Engineering
基金 河北省自然科学基金资助项目(F2004000252)
关键词 数据挖掘 关联规则 二进制系统 事务属性 data mining association rule binary system transaction attribute
  • 相关文献

参考文献5

二级参考文献16

  • 1何友全,肖建,黄碧霞,雷妍,熊启军.一种用于数据挖掘的二进制挖掘算法[J].计算机应用研究,2004,21(5):15-16. 被引量:3
  • 2颜跃进,李舟军,陈火旺.一种挖掘最大频繁项集的深度优先算法[J].计算机研究与发展,2005,42(3):462-467. 被引量:20
  • 3R.Agrawal,R.Srikant.Mining sequential patterns.ICDE 1995,Taipei,Taiwan,1995.
  • 4R.Srikant,R.Agrawal.Mining sequential patterns:Generalizations and performance improvements.EDBT 1996,Avignon,France,1996.
  • 5J.Pei,J.Han,B.Mortazavi-Asl,et al.PrefixSpan mining sequential patterns efficiently by prefix projected pattern growth.ICDE 2001,Heidelberg,Germany,2001.
  • 6M.Garofalakis,R.Rastogi,K.Shim.SPIRIT:Sequential pattern mining with regular expression constraints.In:Proc.VLDB 1999,San Francisco:Morgan Kaufmann.,1999.223~234.
  • 7C.Bettini,X.S.Wang,S.Jajodia.Mining temporal relationships with multiple granularities in time sequences.Data Engineering Bulletin,1998,21 (1):32 ~ 38.
  • 8J.Han,G.Dong,Y.Yin.Efficient mining of partial periodic patterns in time series database.ICDE 1999,Sydney,Australia,1999.
  • 9H.Mannila,H.Toivonen,A.I.Verkamo.Discovering frequent episodes in sequences.KDD 1995,Montreal,Quebec,Canada,1995.
  • 10R.Agrawal,R.Srikant.Fast algorithms for mining association rules in large databases.The 20th Int'l Conf.Very Large Databases,Santiago,Chile,1994.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部