期刊文献+

非线性项介于特征值之间的一类抛物方程解的多重性(英文)

Multiplicity Results for a Parabolic Equation with Nonlinearities Crossing Eigenvalues
下载PDF
导出
摘要 考察了在有界区域上,满足狄利克莱边界条件的一类非线性抛物方程.利用变分方法理论,把无限维的问题转化为有限维的问题,讨论了当方程的非线性项介于特征值之间时,方程的外部项与方程解的多重性之间的联系. Muhiplicity of solutions for a nonlinear perturbation of a parabolic operator under Dirichlet boundary condition in a bounded domain is investigated. The variational reduction method is used to reduce the problem from an infinite dimensional one to a finite one, and then a relationship between multiplicity of solution and source terms in equation is revealed when nonlinearities cross eigenvalues.
出处 《郑州大学学报(理学版)》 CAS 2008年第3期6-10,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目,编号10471018
关键词 特征值 压缩映象原理 变分方法 eigenvalue contraction mapping theorem variational reduction method
  • 相关文献

参考文献6

  • 1Choi Q H, Jin Zhengguo. The existence of solutions of a nonlinear parabolic equation with nonlinearities crossing eigen values[J]. Kangweon-Kyungki Math J, 1999, 7(2): 171-181.
  • 2Choi Q H, Chun S, Jung T. The multiplicity of solutions and geometry of a nonlinear elliptic equation[J]. Studia Math, 1996, 120:259 -270.
  • 3Choi Q, Jin Zhengguo. Multiplicity of solutions and source teams in a nonlinear parabolic equation under Dirichlet boundary condition[J]. Bull Korean Math Soc, 2000, 37(4) : 697-710.
  • 4Choi Q H, Nam H. A nonlinear beam equation with nonlinearity crossing an eigenvalue[J]. J Korean Math Soc, 1997, 34: 609-622.
  • 5Choi Q H, Jung T S. An application of a variational reduction method to a nonlinear wave equation[J]. J Differential Equations, 1995, 117: 390-410.
  • 6Mckenna P J. Topological methods for asymmetric boundary value problems[D]. Seoul: Seoul National University, 1993, 11: 75-79.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部