摘要
考察了在有界区域上,满足狄利克莱边界条件的一类非线性抛物方程.利用变分方法理论,把无限维的问题转化为有限维的问题,讨论了当方程的非线性项介于特征值之间时,方程的外部项与方程解的多重性之间的联系.
Muhiplicity of solutions for a nonlinear perturbation of a parabolic operator under Dirichlet boundary condition in a bounded domain is investigated. The variational reduction method is used to reduce the problem from an infinite dimensional one to a finite one, and then a relationship between multiplicity of solution and source terms in equation is revealed when nonlinearities cross eigenvalues.
出处
《郑州大学学报(理学版)》
CAS
2008年第3期6-10,共5页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金资助项目,编号10471018
关键词
特征值
压缩映象原理
变分方法
eigenvalue
contraction mapping theorem
variational reduction method