期刊文献+

一种新的支持向量分类算法ACNN-SVM 被引量:2

A New Algorithm of Classification Based on Support Vector ACNN-SVM
下载PDF
导出
摘要 针对NN-SVM算法的不足,提出了一种新的支持向量分类算法——ACNN-SVM.先对训练样本集进行最近邻修剪,用SVM训练得到一个SVM模型,然后,计算最近邻修剪后的训练样本集中样本到超平面的距离,如果距离差大于给定的阈值则将其从最近邻修剪后的训练样本集中删除,最后对再修剪后的样本集用SVM训练得到一个最终的SVM模型.实验表明,ACNN-SVM算法的效果优于NN-SVM算法. A new Support Vector algorithm of classification ACNN-SVM is put forward aiming at the deficiency of NN-SVM. Firstly, it prunes the training set according to whether it is the nearest neighbor or not and gets a SVM model. Secondly, the distance is calculated from each sample of the training samples set to its super-plane. The distance is deleted from the reserved training samples set if it is greater than the given threshold. A final SVM model is gotten through SVM training of the leaved samples set. The experiment shows that ACNN-SVM excels NN-SVM.
出处 《郑州大学学报(理学版)》 CAS 2008年第3期56-58,共3页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号30671639 江苏省自然科学基金资助项目 编号BK2005134
关键词 NN-SVM算法 ACNN-SVM算法 超平面距离 阈值 NN-SVM algorithm ACNN-SVM algorithm distance of the super plane threshold
  • 相关文献

参考文献7

  • 1Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 2Cherkassky V, Mulier F. Learning from Data : Concept, Theory and Method[M]. New York: John Viley & Sons, 1997.
  • 3李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 4Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995,20(3) : 273-297.
  • 5Osuna E, Freund R,Girosi F. An improved training algorithm for Support Vector Machines[C]// Neural Networks for Signal Processing VII-Proceedings of the 1997 IEEE Workshop. Amelia Island, FL, USA, 1997:276-285.
  • 6Platt J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization[M]. Cambridge, MA: MIT Press, 1999 : 185-208.
  • 7李红莲,王春花,袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020. 被引量:71

二级参考文献15

  • 1Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28.
  • 2Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467.
  • 3Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999.
  • 4Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999.
  • 5Klaus-Robert Mailer, Sebastian Mika, Gunnar Raetsch, Koji Tsuda, and Bernhard Schoelkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12 (2): 181-201.
  • 6Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 7Hearst M.A., Dumais S.T., Osman E., Platt J., Scholkopf B.. Support vector machines. IEEE Intelligent Systems, 1998, 13(4): 18~28
  • 8Vapnik V.N.. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988~999
  • 9Vapnik V.N.. Statistical Learning Theory.2nd ed..New York: Springer-Verlag, 1999
  • 10Müller Klaus-Robert, Mika Sebastian, Rtsch Gunnar, Tsuda Koji, Schlkopf Bernhard. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181~201

共引文献119

同被引文献19

  • 1杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. 被引量:16
  • 2VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 3CHERKASSKY V,MULIER F.Learning from data:concept,theory and method[M].New York:John Viley & Sons,1997.
  • 4MANGASARIAN O,WILD E.MultisurFace proximal support vector machine classification via generalized eigenvalues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):69-74.
  • 5DUDA R O,HART P E,STORK D G.Pattern classification[M].2nd Ed.Hoboken,NJ:Wiley Interscience,2000.
  • 6LI Hai-feng,JIANG Tao,ZHANG Ke-shu.Efficient and robust feature extraction by maximum margin criterion[C]// Proc Conf Advances in Neural Information Processing Systems Cambridge.MA:MIT Press,2004,1 (1):97-104.
  • 7MUPHY P M,AHA D W.UCI repository of machine learning databases[EB/OL].[2009-10-24].http://www.ics.uci.edu/-mlearn/mL Repo Sitory.html.
  • 8JAYADEVA K R,CHANDRA S.Twin support vector machines for pattern classification[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2007,29 (5):905-910.
  • 9GOLUB G H,VAN LOAN C F.Matrix computations[M].3rd ed.Baltimore:The John Hopkins Univ Press,1996.
  • 10韩萍,刘则徐,何炜琨.一种有效的机场安检X光手提行李图像两级增强方法[J].光电工程,2011,38(7):99-105. 被引量:10

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部