期刊文献+

基于近红外波长成像的异物检测新方法(英文) 被引量:2

Detection of Foreign Materials Based on Near Infrared Wavelength Imaging
下载PDF
导出
摘要 为有效检测出与背景形态、颜色极其相似的异物,根据异物与背景近红外吸收特性的差别,提出近红外光谱成像检测异物的方法.该方法分析近红外波段中异物与背景吸收特性差异随波长变化的规律,确定了区分背景与多种异物的最佳检测波段范围,建立近红外光谱成像系统,将近红外吸收特性差别转化为近红外图像中异物与背景的图像特征差别,利用自适应图像增强和二值化图像处理从背景中提取异物.实验结果表明,该方法获取的异物图像特征明显,检测结果与实际相符,此方法可有效检测与背景特征相似的异物. For effective detection of foreign fibers having almost the same shape and color as the background, an infrared spectral imaging method based on the absorption characteristic discrimination between foreign materials and background is proposed. According to the method, the relation between the absorption characteristic discrimination and the wavelength in the region of near infrared (NIR) is analyzed, and the optimal band for discriminating several types of foreign materials from background is determined. The absorption characteristic of foreign materials is transformed into the image feature in the developed infrared spectral imaging system. Furthermore, the foreign materials are extracted from the background using adaptive image enhancement and binary image processing. The experimental result indicates that the image features of foreign materials are obvious and the conclusion is consistent with the fact. And it provides an effective method to detect foreign materials from background.
作者 鲁德浩
出处 《郑州大学学报(理学版)》 CAS 2008年第3期93-97,共5页 Journal of Zhengzhou University:Natural Science Edition
关键词 异物 吸收特性 NIR光谱成像 最优波长 foreign material absorption discrimination NIR spectral imaging optimal wavelength
  • 相关文献

参考文献10

  • 1Antonio T. Detecting fabric defects with a neural network using two kinds of optical patterns[J]. Textile Res J, 2002, 32(6) :545-550.
  • 2Haworth C D, Petillot Y R. Image processing techniques for metallic object detection with millimetre-wave images[J]. Pattern Recognition Letters, 2006, 27 ( 15 ) : 1843-1851.
  • 3Colantonio S, Benvenuti M, Dibono M D,et al. Object tracking in a stereo and infrared vision system[J]. Infrared Physics & Technology, 2007, 49(3):266-271.
  • 4Fei Zhang, Li Chengfang, Li Shi. Detecting and tracking dim moving point target in IR image sequence[J]. Infrared Physics & Technology, 2005, 46(4):323-328.
  • 5Li Fang, Jiang Zhiliang, Chen Bin. Study on the resonance scattering spectroscopy of starch in solution[J]. Journal of Guangxi Normal University: Natural Science Edition, 2001, 19 (3) : 60-63.
  • 6Huang Wei, Liu Xuejing. Charge transfer spectrophotometric determination of nicotine in the tobacco[J]. Journal of Sichuan Normal University: Natural Science Edition, 2003, 26(4):411-413.
  • 7Zhang Dongling, He Fengtao. Study of the high density optical recording with 405 nm Laser source[J]. Journal of Henan University: Natural Science Edition, 2004, 34(1):22 -24.
  • 8Church J S, Neill J A. The detection of polymeric contamination in loose scoured wool[J]. Vibrational Spectroscopy, 1999, 23(5): 285-293.
  • 9Ajay P, Hamed S. Recognition of cotton contamination via X ray micro-tomographic image analysis[J]. IEEE Trans on Image Processing, 2002, 17(3): 420-427.
  • 10Din C T, Yi L C, Liu M S. Wavelet-based multi-spectral image fusion[J]. IEEE Geoscience and Remote Sensing Symposium, 2001, 4(9) :1956-1958.

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部