期刊文献+

一种新的基于链码特征的图像检索算法

Novel Algorithm for Image Retrieval Based on Chain Code
下载PDF
导出
摘要 在分析采用Freeman链码进行形状描述的基础上,提出了两种链码空间分布特征的提取算法:链码分布矢量及链码相关矢量,同时对这两种方法的尺度、旋转、平移不变性进行了分析和验证;针对两种算法,分别设计了有效的相似性度量策略;最后结合链码直方图进行图像检索。由于该方法在进行图像检索时既考虑了链码的统计特征又包含了其空间分布特性,因此取得了比传统方法更好的检索效果,试验结果也证明了该算法的有效性。 Based on the analysis of chain code in shape representation, two novel shape descriptors, named chain code distribution vector and chain code coherence vector, are introduced to express the spatial feature in the chain code. These two descriptors have the advantages of being invariant to the position, rotation and scaling of the image content and have nothing to do with the start point of the chain code. Combined with chain code histogram, two different matching methods are presented to measure the similarity of shape information. It is clear that both the statistical feature and the spatial feature of the chain code are considered in the new methods. Experiment results show that our methods give better performance than the traditional methods.
作者 孙君顶
出处 《光电工程》 EI CAS CSCD 北大核心 2008年第9期105-109,114,共6页 Opto-Electronic Engineering
基金 河南省教育厅自然科学基础研究基金(2007520019,2008B520012) 河南理工大学博士基金(B050901) 河南理工大学骨干教师资助基金 河南省基础与前沿技术研究计划项目(072300460050) 苏州大学江苏省计算机信息处理技术重点实验室开放基金(KJS0715)
关键词 链码 空间分布特征 链码分布矢量 链码相关矢量 chain code spatial distribution feature chain code distribution vector chain code coherence vector
  • 相关文献

参考文献9

  • 1ZHANG D S, LUG J. Review of shape representation and description techniques [J]. Pattern Recognition, 2004, 37(1): 1-19.
  • 2FREEMAN H. On the encoding of arbitrary geometric configurations [J]. IRE.Trans.Elec.Comput, 1961, EC-10: 260-268.
  • 3ZHANG S Y, MA K K. A novel shape matching method using biological sequence dynamic alignment [C]// IEEE International Conference on Multimedia and Expo. New York: IEEE, 2000: 343-346.
  • 4NEUHOFF D, CASTOR K. A rate and distortion analysis of chain codes for line drawings [J]. IEEE Trans. Information Theory, 1985, 31(1): 53-68.
  • 5IICARINEN J, VISAA. Shape recognition of irregular objects [J]. SPIE, 1996, 2904: 25-32.
  • 6王小玲,谢康林.一种新的方向码描述的图像检索方法[J].哈尔滨工业大学学报,2006,38(9):1545-1548. 被引量:6
  • 7章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..
  • 8孙君顶,丁振国,周利华.基于图像信息熵与空间分布熵的彩色图像检索方法[J].红外与毫米波学报,2005,24(2):135-139. 被引量:21
  • 9Lee H Y, Lee H K, Ha Y H. Spatial color descriptor for image retrieval and video segmentation [J]. IEEE Trans. on multimedia, 2003, 5(3): 358-367.

二级参考文献19

  • 1胡青泥,欧宗瑛,刘金义.二值和多值图象的边界跟踪及逼近[J].大连理工大学学报,1995,35(3):357-361. 被引量:7
  • 2周步样.单向变链码交叉图形压缩技术[J].计算机工程,1995,21(2):37-39. 被引量:1
  • 3Pass G, Zabin R, Miller J. Comparing images using color coherence vectors[C]. In ACM International Conference on Multimedia. Boston:MA, 1996,65-73.
  • 4Hus W, Chua T S, Pung, H K. An integrated color-spatial approach to content-based image retrieval[C]. In Proc. 1995 ACM Multimedia Conf., San Francisco: United States 305-313.
  • 5Stehling R O, Nascimento M A, Falcao A X. On 'shapes' of colors for content-based image retrieval[C]. In the ACM Multimedia Conference, Los Angeles:2000,171-174.
  • 6Huang J. Image indexing using color correlograms[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan:1997.762-768.
  • 7Fauqueur J, Boujemaa N. Region-based image retrieval: Fast coarse segmentation and fine color description[J]. Journal of Visual Languages and Computing (JVLC), Special Issue on Visual Information Systems. 2004,15(1):69-95.
  • 8Rao A B, Srihari R K, Zhang Z F. Spatil color histogram for content-based retrieval[C]. Tools with artificial intelligence. Proceedings of 11th IEEE International Conference. Washington, DC:United States, 1999, 183-186.
  • 9Lee H Y, Lee H K, Ha Y H. Spatial color descriptor for image retrieval and video segmentation[J]. IEEE Trans. on Multimedia, 2003,5(3),358-367.
  • 10Swain M J, Ballard D H. Color indexing[J].Int. J. on Computer Vision, 1991,7(1):11-32.

共引文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部