期刊文献+

青藏高原7种嵩草遗传多样性AFLP研究 被引量:3

Research of Genetic Diversity in Seven Kobresia by AFLP Tibet Plateau of China
下载PDF
导出
摘要 【目的】从分子水平研究嵩草品种资源之间的遗传多样性,为综合评价青藏高原嵩草种质资源提供依据。【方法】用筛选出的4对E+3/M+3引物对11份嵩草基因组DNA进行AFLP扩增。【结果】共得到164条清晰可辨条带,多态性条带154条,多态性位点百分率为93.96%,嵩草平均Nei’s基因多样性指数为0.2430,Shannon’s多样性指数为0.4012,表明嵩草种质间存在丰富的遗传多样性。通过UPGMA聚类分析,将11个嵩草居群划分为5类。【结论】嵩草的11个自然居群存在丰富遗传多样性,嵩草居群的遗传相似系数与海拔之间没有相关性,嵩草居群的生境的异质性影响遗传分化。 [Objective] This work analyzed the genetic diversity of Kobresia accessions, in the molecular level, and further obtained the helpful information for breeding and germplasm evaluation. [Method] Genomic DNA of Kobresia was amplified with four E+3 and M+3 primer combinations with AFLP. [Result] AFLP analysis produced 164 score able bands, among them 154 (93.96%) were polymorphic. The mean Nei's gene diversity index (H) was 0.2430, the Shannon's information index (I) was 0.4012, indicating that genetic diversity of Kobresia is abundant. The number of 11 Kobresia accessions from Tibetan Plateau can be classified into five groups with cluster analysis based on the UPGMA method. [Conclusion] In general, there is an abundant genetic diversity among Kobresia accessions resources, and the genetic coefficient is unrelated to their geographic latitude. Natural habitats influenc genetic differentiation of Kobresia.
出处 《中国农业科学》 CAS CSCD 北大核心 2008年第9期2820-2825,共6页 Scientia Agricultura Sinica
基金 科技部国际科技合作项目(2006DFA33630) 西藏自治区科技攻关项目(2005011)
关键词 嵩草 遗传多样性 AFLP Kobresia Genetic diversity AFLP
  • 相关文献

参考文献25

  • 1周兴民.中国嵩草草甸.北京:科学出版社,1982.
  • 2李巧峡,赵庆芳,崔艳,马世荣.青藏高原东南部四川嵩草的遗传多样性研究[J].西北师范大学学报(自然科学版),2006,42(1):69-73. 被引量:2
  • 3赵庆芳,李巧峡,马世荣,崔燕,王刚.青藏高原东部矮生嵩草遗传多样性的RAPD研究[J].生态学报,2006,26(8):2494-2501. 被引量:22
  • 4Barrett B A, Kidwell K K, Fox P N. AFLP-based genetics diversity assessment among wheat culfivars from the pacific northwest. Crop Science, 1998, 38:1261-1271
  • 5Bohn M, Utz H F, Melchinger A E. Genetics similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Science, 1999, 39:228- 237.
  • 6Caicedo A L, Gaitan E, Duque M C, Toro Chica O, Debouck D G,Tohme J. AFLP fingerprinting of phaseolus lunatus L. and related wild species from South America. Crop Science, 1999, 39: 1497-1507.
  • 7Zhong D, Pal A, Yah G. AFLP-based genetic linkage map for the red flour beetle ( Tribolium castaneum). Journal of Heredity, 2004, 95(1): 53-61.
  • 8Renganayaki K, Read J C, Fritz A K. Genetic diversity among Texas bluegrass genotypes (Poa arachnifera Torr.) revealed by AFLP and RAPD markers. Theoretical and Applied Genetics, 2001, 102: 1037-1045.
  • 9Lombard V, Baril C P, Dubreuil P, Blouet F, Zhang D. Genetic relationships and fingerprinting of rapeseed cultivars by AFLP: Consequences for varietal registration. Crop Science, 2000, 40:1417-1425.
  • 10Julio E, Verrier J L, Dorlhac de Borne E Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theoretical and Applied Genetics, 2006, 112:335-346.

二级参考文献95

共引文献152

同被引文献72

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部