期刊文献+

带Robin边值条件的半线性奇异椭圆方程正解的存在性(英文) 被引量:2

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR SEMILINEAR ELLIPTIC EQUATIONS WITH ROBIN BOUNDARY CONDITIONS
下载PDF
导出
摘要 本文研究了一类带Robin边值条件的半线性奇异椭圆方程.通过Hardy不等式,山路引理以及选取适当的试验函数验证局部PS条件,得到了此类方程正解的存在性这一结果. In this paper, we investigate a class of semilinear singular elliptic equations with Robin boundary conditions. By Hardy inequality, Mountain-Pass Theorem and chosing a test function to verify local PS conditions, we obtain the existence of positive solutions of such equations.
出处 《数学杂志》 CSCD 北大核心 2008年第5期473-482,共10页 Journal of Mathematics
基金 the Natural Science Foundation of China (10171036)
关键词 正解 紧性 临界Sobolev—Hardy指数 HARDY不等式 椭圆方程 positive solutions compactness critical Sobolev-Hardy exponent Hardy inequality elliptic equation
  • 相关文献

参考文献13

  • 1Garcia Azorero J.P., Alonso I. P.. Hardy inequalities and some critical elliptic and parabolic problems[J]. J. Differential Equations, 1998,144: 441-476.
  • 2Adimurthi, Mancini G. , Yadava S. L.. The role of the mean curvature in semilinear Neumann problem involving critical exponent[J]. Comm. Partial Differential Equations, 1995,20:591-631.
  • 3Admimurthi, Pacella F., Yadava S. L.. Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with nonlinearity[J]. J. Funct. Anal. 1993,113: 318-350.
  • 4Brezis H. , Nirenberg L.. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent[J]. Comm. Pure Appl. Math. ,1983,36:437-478.
  • 5Caldiroli P., Malchiodi A.. Singular elliptic problems with critical growth [J]. Comm. Partial Differential Equations, 2002,27 : 846-847.
  • 6Caldiroli P. , Musina R.. On the existence of extremal functions for weighted Sobolev embedding with critical exponent[J]. Cal. Var. PDE. , 1999,27: 365-387.
  • 7Cao Daomin, Peng Shuangiie. A global compactness result for singular elliptic problems involving critical Sobolev exponent[J]. Proc. Amer. Math. Soc. , 2003,131: 1857-1866.
  • 8Chabrowski J. , Willem M.. Least energy solutions of a critical Neumann problem with a weight [J]. Cal. Var. 2002,15:421-431.
  • 9Ghoussoub N. , Yuan C. , Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J]. Trans. Amer. Math. Soc. ,2000,352:5703-5743.
  • 10Kang Dongsheng, Deng Yinbin. Existence of solution for a singular critical elliptic equation [J]. Journal of Mathematical Analysis and Applications,2003,284: 724-732.

同被引文献9

  • 1Jannelli E. The role played by space dimension in elliptic critical problems [J]. J. Di?erential Equations,1999,156: 407-426.
  • 2Cao Daomin,Peng Shuangjie. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms [J]. J. Di?erential Equations,2003,193: 424-434.
  • 3Dao Daomin,Han Pigong. Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J]. J. Di?erential Equations,2004 205: 521-537.
  • 4Ferrero A,Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations [J]. J. Di?erential Equations,2001,177: 494-522.
  • 5Kang Dongsheng,Peng Shuangjie. Positive solutions for a singular critical elliptic problem [J]. Applied Mathematics Letters,2004,17: 411-416.
  • 6Alves C O,Filho D C de M,Souto M A S. On systems of elliptic equations involving subcritical or critical Sobolev exponents [J]. Nonlinear Analysis,2000,42: 771-787.
  • 7Liu Zhaoxia,Han Pigong. Existence of solutions for singular elliptic systems with critical exponents [J]. Nonlinear Analysis,2008,69: 2968-2983.
  • 8康东升,黄燕,刘殊.一类拟线性椭圆问题极值函数的渐近估计[J].中南民族大学学报(自然科学版),2008,27(3):91-95. 被引量:9
  • 9龚亚英.一类拟线性奇异椭圆方程无穷多解的存在性[J].数学杂志,2010,30(4):726-730. 被引量:2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部