期刊文献+

分数布朗运动模型中贝叶斯估计的渐近正态性(英文) 被引量:2

ASYMPTOTIC NORMALITY OF THE BAYES ESTIMATOR IN FRACTIONAL BROWNIAN MOTION MODEL
下载PDF
导出
摘要 本文研究了由分数布朗运动驱动的线性随机微分方程中贝叶斯估计的渐近趋势.利用分数布朗运动的随机积分理论和Girsanov公式,得到了在平方损失函数下贝叶斯估计的渐近正态性. In this paper, we discuss the asymptotic behavior of the Bayes estimator for a linear stochastic differential equation with factional Brownian motion. According to the stochastic analysis for fractional Brownian motion and Girsanov formula, we obtain the asymptotic normality of the usual Bayes estimator under quadratic loss function.
出处 《数学杂志》 CSCD 北大核心 2008年第5期499-502,共4页 Journal of Mathematics
关键词 分数布朗运动 渐近正态性 GIRSANOV定理 BAYES估计 fractional Brownian motion asymptotic normality Girsanov formula Bayes estimator
  • 相关文献

参考文献7

  • 1Basawa Ishwar V. and Prakasa Rao B. L. S., Statistical inference for stochastic processes[M], Academic Press, 1980.
  • 2Hu Yaozhong ,Duncan T. E and Pasik-Duncan B. , Stochastic calculus for fractional Brownian motion [J]. Theory SIAM J. Control Option, (2000), 582-612.
  • 3Decreusefond L. and Usttinel A. S., Stochastic analysis of the fractional Brownian motion [J]. Potential Analysis (1999), 177-214.
  • 4Ibragimov I. A. and Has' minskii R. Z. , Statistical estimation: Asymptotic theory[M]. Springer- Verlag New York 1979.
  • 5Kleptsyna M. L. Breton A. Le and Roubaud M. -C. , Parameter estimation and optimal filtering for fractional type stochastic systems[J], Statist. Infer. for Stoch. Proce. 3(2000), 173-182.
  • 6Kukush A. , Mishura Yu. and Valkeila E. , Statistical inference with fractional Brownian motion[J], Statist. Infer. for Stoch. Proce. (2005), 71-93.
  • 7Norros I. , Valkeila E. and Virtamo J. , An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions[J], Bernoulli, (4) (1999), 571-587.

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部