期刊文献+

一种基于k-means聚类技术的快速选择性Bagging Trees集成算法研究

A Study on Quick Selective Bagging Trees Ensemble Algorithm Based on K-means Cluster Technology
下载PDF
导出
摘要 选择性集成算法是目前机器学习关注的热点之一。在对一海藻繁殖案例研究的基础上,提出了一种基于k-means聚类技术的快速选择性Bagging Trees集成算法;同时与传统统计方法和一些常用的机器学习方法相比较,发现该算法具有较小的模型推广误差和更高的预测精度的优点,而且其运行的效率也得到了较大的提高。 Selective ensemble algorithm now becomes a hot topic in machine learning. In this paper, based on a case study of algae propagation, the authors draw a new ensemble algorithm, a quick selective bagging trees ensemble algorithm based on k - means cluster technology. And contrasted with the traditional statistical methods and some machine learning methods, this new algorithm proposed in this paper is not only a model to promote small generalized error and the higher accuracy, but also costs much little time than other algorithms.
作者 陈凯 温慧博
出处 《统计与信息论坛》 CSSCI 2008年第9期23-27,共5页 Journal of Statistics and Information
关键词 决策树 自助法 选择性集成 decision trees bootstrap selective ensemble
  • 相关文献

参考文献11

  • 1Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2) : 123 - 140.
  • 2Schapire R E, Freund Y, Bartlett P, Lee W S. Boosting the margin: a new explanation for the effectiveness of voting methods [J]. The Annals of Statistics, 1998, 26(5) : 1651 - 1686.
  • 3Breiman L. Arcing the edge[J]. The Annals of Statistics, 1998, 26(3) : 801-823.
  • 4Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
  • 5Breiman L, Friedman J H, Olshen R A, Stone C J. Classification and regression trees[M]. New York: Chapman & Hall (Wadsworth, Inc. ), 1984.
  • 6Zhou Z H, Wn J, Tang W. Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137 (1-2): 239-263.
  • 7Kira K, Rendell L A. The feature selection problem: traditional methods and a new algorithm[J]. Proc of 9th National Conf on AI, 1992(4) : 129- 134.
  • 8John G H, Kohavi R, Pfleger K. Irrelevant features and the subset selection problem[C]. Proc of the 11th Int'l Conf on Machine Learning, 1994:121 - 129.
  • 9Koller D, Sahami M. Toward optimal feature selection[C]. Proc of Int'l Conf on Machine Learning, 1996,15(2) :284 - 292.
  • 10Manoranjan Dash, Liu Huan. Feature selection for classification[J]. Intelligent Data Analysis, 1997,1(3) : 131 - 156.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部