期刊文献+

最优过程均值和生产运行长度的确定 被引量:2

Determination of the Optimal Process Mean and the Length of the Production Run
下载PDF
导出
摘要 实际生产中,过程均值由于受到随机振荡的影响,经常从受控状态逐渐漂移到失控状态,从而导致大量不合格品的出现.针对这种情况,本文假定随机振荡次数服从泊松过程,每次振荡引起过程均值漂移相互独立且服从同一指数分布,结合不对称田口质量损失函数,建立了最佳初始过程均值的经济模型,并讨论了最优生产运行长度的确定.通过与初始过程均值设置在目标值处的情形比较,说明本文模型对降低生产成本的有效性。灵敏度分析表明了各参数对最优过程均值和生产运行长度的影响. Aiming at the question that the process mean often shift due to occurrences of some random shocks, this paper considers the problem of selecting an optimal setting of the process mean and the length of the production run. The product output becomes nonconforming when the process experiences a certain number of accumulated shocks, The number of shocks is assumed to follow a Poisson process and the drift of the process mean is assumed to follow an exponential distribution. An asymmetric loss function is utilized for developing the economic model. It is shown that the advantage of the proposed model is significant when compared with putting process mean at the target. From the results of the sensitivity analyses, we find the effects of parameters on the optimal design.
出处 《数理统计与管理》 CSSCI 北大核心 2008年第5期881-885,共5页 Journal of Applied Statistics and Management
关键词 泊松过程 损失函数 过程均值 生产运行长度 poisson process, loss function, process mean, production run
  • 相关文献

参考文献13

  • 1Rahim M A, Al-Sultan K S. Joint determination of the target mean and variance of a process [J]. Journal of Quality Maintenance Engineering, 2000, 6(3): 192-199.
  • 2Rahim M A, Shaibu A B. Economic selection of the mean and upper limit for a canning problem with limited capacity [J]. Process Control and Quality, 2000, 11(5): 369-381.
  • 3Cho B R, Kim Y J, Kimbler D L, Phillips M D. An integrated joint optimization procedure for robust and tolerance design [J]. International Journal of Production Research, 2000, 38(10): 2309-2325.
  • 4Cho B R, Ferrell W G, Kimbler D L. Development of the optimum product specification for an exponential-type quality characteristic [J]. International Journal of Reliability, Quality and Safety Engineering, 1996, 3(3): 243-256.
  • 5Hall R I, Eillon S. Controlling production processes which are subject to linear trend [J]. Operational Research Quarterly, 1963, 14(3): 179-189.
  • 6Gibra I N. Optimal control of processes subject to linear trends [J]. Journal of Industrial Engineering, 1967, 18(1): 34-41.
  • 7Rahim M A, Banerjee P K. Optimal production run for a process with random linear drift [J]. Omega, 1988, 16(4): 347-351.
  • 8Al-Sultan K S, Al-Fawzan M A. An extension of Rahim and Banerjee's model for a process with upper specification limits [J]. International Journal Production Economics, 1997, 53(3): 265-280.
  • 9Al-Sultan K S, Al-Fawzan M A. Variance reduction in a process with random linear drift [J]. Inter- national Journal of Production Research, 1997, 35(6): 1523-1533.
  • 10Hunter W G, Kartha C P. Determining the most profitable target value for a production process [J]. Journal of Quality Technology, 1977, 9(4): 176-181.

同被引文献24

  • 1张周通,夏雨人.基于瑞利分布的SPC控制图应用研究[J].计算机仿真,2006,23(1):219-221. 被引量:7
  • 2Reynolds Jr, M R Amin, R. W, et al. x^- charts with variable sampling intervals [J]. Technometrics, 1988, 30:181-192.
  • 3Tagaras G. A survey of recent development in the adaptive control charts [J]. Journal of Quality Technology, 1998,30:212-231.
  • 4Celano G, Costa A F B. Statistical design of variable sample size and sampling interval x^- control charts with run rules [J]. International Journal of Advanced Manufacturing Technology, 2006,28 : 966-977.
  • 5Lin Yu-Change, Chou Chao-Yu. Non-normality and the variable parameters x charts [J]. European Journal of Operational Research ,2007,176:361-373.
  • 6Elsayed E A, Chen A. An economic design of x^- charts using quadratic loss function [J]. International Journal of Production Research, 1994, 32 (4) : 873- 887.
  • 7Ben daya M, Duffuaa S O. Integration of Taguchi's loss function approach in the economic design of x^- chart [J]. International Journal of Quality and Reliability Management, 2003, 20(5) :607-619.
  • 8Junichi Kobayashi, Arizono I, Takemoto Y. Economic operation of (x, s) control chart indexed by Taguchi's loss function [J]. International Journal of Production Research, 2003, 41(6): 1115-1132.
  • 9Wu Z, Shamsuzzaman M, Pan E S. Optimization design of control charts based on Taguchi's loss function and random process shifts[J]. International Journal of Production Research, 2004, 42 (2) : 379-390.
  • 10Andras. Control charts; a cost-optimization approach for processes with random shifts [J]. Applied Stochastic Models in Business and Industry, 2004, 20: 185-200.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部