期刊文献+

甘蓝短散布元件对转基因表达效果的研究 被引量:1

Effect of Short Interspersed Nuclear Element(SINE) of Cabbage on Transgene Expression In Transgenic Tobacco
下载PDF
导出
摘要 为检验甘蓝短散布元件(SINE)对植物转基因表达的影响,采用PCR方法,从甘蓝基因组中克隆了一段短散布元件序列(Short Interspersed Nuclear Element,SINE),该SINE具有核基质结合区(matrix attachmentregion,MAR)的结构特征,将其构建到β-葡糖醛酸酶(β-glucuronidase,GUS)基因(uidA)的两侧翼,形成SINE调控的植物表达载体,采用农杆菌介导法,将含SINE序列和不含SINE序列的植物表达载体导入烟草中。对转基因植株进行GUS活性定量测定,结果表明,SINE表现出类似MAR的功能,可以提高外源uidA基因的表达水平,与不含SINE的转化植株相比,外源基因的平均表达水平提高了2倍,但转基因植株个体间表达水平存在较大的差异。 In this study, a SINE fragment was cloned from cabbage (Brassica oleracea var. capitata L, ) by PCR method in order to test its effect on transgene expression in plant. This SINE fragment has the structure and feature of matrix attachment region (MAR). The plant expression vector was constructed by SINE sequence used to flank the β-glucuronidase (GUS) report gene within the T-DNA of the binary vector. Vectors containing or lacking SINEs were then used to transform tobacco plants by Agrobacteriurn turnfaciens. The biologic activity of GUS was quantitatively determined; the result showed that the expression level of uidA gene could be improved by regulation of SINE fragment, and the function of SINE was similar to MAR. Furthermore, transgenic plants containing the SINE and flanking the GUS gene exhibited higher levels of transgene expression, compared with the transgenic plants that lacked the SINE. On average, plants transformed with SINE-containing vector expressed GUS at level 2-fold higher than the controls. However, the expression differences among individual transformants were still obvious.
出处 《云南农业大学学报(自然科学版)》 CAS CSCD 2008年第5期590-594,共5页 Journal of Yunnan Agricultural University:Natural Science
基金 国家自然基金项目资助(30571275)
关键词 甘蓝 短散布元件(SINE) 核基质结合区 转基因表达 烟草 cabbage short interspersed nuclear element (SINE) matrix attachment region transgene expression tobacco (MAR)
  • 相关文献

参考文献9

  • 1[1]TIKHONOV A P,LAVIE L,TATOUT C,et al..Target sites for SINE integration in Brassica genomes display nuclear matrix binding activity[J].Chromosome Research,2001,9 (4):325 -337.
  • 2[2]LENOIR A B,COURNOYER S I,WARWICK G.et al..Evolution of SINE SI Retroposons in Cruciferae Plant Species[J].Mol.Biol.Evol,1997,14 (9):934-941.
  • 3[3]BORODULINA O R,KRAMEROV D A.PCR-based approach to SINE isolation:simple and complex SINEs[J].Gene,2005,349:197-205.
  • 4韩德民,周开亚,王义权.短散在元件(SINE)的研究进展[J].生物化学与生物物理进展,2000,27(5):461-465. 被引量:5
  • 5[6]JEFFERSON R A.Assaying chimeric genes in plants:the GUS gene fusion system[J].Plant Mol Biol Rep.,1987,5:387-405.
  • 6[7]BRADFOLD M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal.Biochem,1976,72:248-254
  • 7[8]BOLLE MIGUEL,BUTAYE KATLEEN,GODERIS INGE,et al..The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants[J].Plant Molecular Biology,2007,63 (4):533-543.
  • 8黄慧珍,陈士云,吉万全,王瑶.核基质附着区与转基因表达[J].中国生物工程杂志,2004,24(9):2-6. 被引量:4
  • 9程旭东,凌宏清.植物基因组中的非LTR反转录转座子SINEs和LINEs[J].遗传,2006,28(6):731-736. 被引量:7

二级参考文献57

  • 1Li T,Gene,1999年,239卷,2期,367页
  • 2Wang G,Mutat Res,1999年,434卷,2期,67页
  • 3Breyne P,van Montagu M, Depicker A, et al. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell, 1992,4(4) :463 - 471
  • 4Michalowski S M, Allen G C, Hall G E, et al. Characterization of randomly-obtained matrix attachment regions (MARs) from higher plants. Biochemistry, 1999,38(39): 12795 - 12804
  • 5Brouwer C, Bruce W, Maddock S, et al. Suppression of transgene silencing by matrix attachment regions in maize:A dual role for the maize 5'ADH1 matrix attachment region. Plant Cell,2002, 14(9):2251 - 2254
  • 6Holmes-Davis R, Comai L. Nuclear matrix attachment regions and plant gene expression. Trends in Plant Science, 1998,3 (3): 91 - 97
  • 7Georgiev G P, Vassetzky Y S, Luchnik A N, et al. Nuclear skeleton,DNA domains and control of replication and transcription. Euro J Biochem, 1991,200(3) :613 - 624
  • 8Spiker S, Thompson W F. Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol, 1996,110( 1 ): 15 - 21
  • 9Schoffl F, Schroder G, Kliem, et al. An SAR-sequence containing 395 bp-DNA fragment mediates enhanced, gene dosage-correlated expression of a chimeric heat-shock gene in transgenic tobacco plants. Transgenic Research, 1993,2(2) :93 ~ 100
  • 10Vain P, Worland B, Kohli A, et al. Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J, 1999,18(3): 233 - 242

共引文献13

同被引文献91

  • 1BHATrACHARYA E, RAJAM M V. Polyamine biosyntheL- ic pathway: a potential target for enhancing alkaloid produc- tion [ C ] //VERPOORTE R, ALFERMANN A W, JOHN- SON T S. Applications of Plant Metabolic Engineering. The Netherlands : Springer, 2007 : 129 - 145.
  • 2SATO F, HASHIMOTO T, HACHIYA A, et al. Meta- bolic engineering of plant alkaloid biosynthesis [ J ]. Proceedings of the National Academy of Sciences of the Unit- ed States of America, 2001, 98 ( 1 ) : 367 -372.
  • 3HELLENS R, MULLINEAUX P, KLEE H. Technical fo- cus: a guide to agrobacterium binary Ti vectors [ J ]. Trends in Plant Science, 2000, 5 <10): 446-451.
  • 4LESSARD P A, KULAVEERASINGAM H, YORK G M, et al. Manipulating gene expression for the metabolic en- gineering of plants [ J 1- Metabolic Engineering, 2002, 4 (1) : 67 -79.
  • 5PEREMARTI A, TWYMAN R M, GOMEZ-GALERA S, et al. Promoter diversity in muhigene transformation [ J ]. Plant Molecular Biology, 2010, 73 (4 -5) : 363 -378.
  • 6MEHROTRA R, GUPTA G, SETHI R, et al. Designer promoter: an artwork of cis engineering [J]. Plant Mo- lecular Biology, 2011, 75 (6): 527-536.
  • 7JUNG W, YU O, LAU S M, et al. Identification and ex- pression of isoflavone synthase, the key enzyme for bio- synthesis of isoflavones in legumes [ J ]. Nature Biotech- nology, 2000, 18 (2): 208-212.
  • 8AHARONI A, MAARTEN A J. Metabolic engineering of terpenoid biosynthesis in plants [ J ]. Phytochemistry Re- views, 2006, 5 (1) : 49 - 58.
  • 9OUTCHKOUROV N S, PETERS J, DE JONG J, et al. The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants [ J ]. Planta, 2003, 216 (6) : 1003 - 1012.
  • 10VERPOORTE R. Introduction [ C ] // VERPOORTE R, ALFERMANN A W, JOHNSON T S. Applications of Plant Metabolic Engineering. The Netherlands : Springer, 2007 : xi - xxi.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部