期刊文献+

基于信息论的盲源信号分离 被引量:2

Blind source separation based on information theory
原文传递
导出
摘要 从混合观测数据向量中恢复出不可直接观测的各个源信号是阵列处理和数据分析的典型问题.独立分量分析是解决这一类问题的新技术,而基于信息论方法的分离技术是独立分量算法中最常用的分离算法.基于信息论算法中主流的FastICA算法和自然梯度优化算法,使用几组不同的信号进行分离,从理论分析和仿真结果表明了FastICA算法的优越性. Recovering the unobserved source signals from their mixtures is a typical problem in array processing and analysis. Independent component analysis (ICA) is a new method to solve this problem. The most common way in independent component analysis is the separation based on information theory. FastlCA algorithm and nature step algorithm are the main way in it. Some groups of signals were separated. The analysis and simulations suggest that the FastlCA algorithm is the best way.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期460-464,471,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 云南省自然科学基金资助项目(2004F0010M) 云南大学重点资助项目(2003Z009B)
关键词 盲源信号分离 独立分量分析 FASTICA算法 blind source separation independent component analysis FastlCA algorithm
  • 相关文献

参考文献10

  • 1HY V ARINEN A. Blind source separation by nonstationarity of variance: A cumula-ntbased approach [J]. IEEE Transactions on Neural Networks, 2001,12 (6) : 1 471-1 474.
  • 2AMARI S I,HY VARINEN A, LEES Y,et al. Blind signal separation and independent component analysis [ J]. Neurocomputing, 2002,49 : 1-5.
  • 3HY VARINEN A. Fast and robust fixed-point algorithms for indepen-dent component analysis [ J]. IEEE Trans Neural Networks, 1999,10:626-634.
  • 4COMON P. Independent component analysis [ C ]//A new concept Signal Processing, 1994,36:287-314.
  • 5BELL A, SEINOWSKI T. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7 : 1 129-1 159.
  • 6HY VARINEN A. Independent component analysis for time-dependent stochastic processes[C]//Proc Int Conf on Artificial Neural Networks (ICANN' 98), Skovde, Sweden, 1998,135-140.
  • 7BOUZAIEN M, MANSOUR A. HOS criteria & ICA algorithms applied to radar detection[ C]//4th International Symposium on Independent Component Analysis and Blind Signal Separation ( ICA2003 ), 2003, Nara, Japan.
  • 8郝菊屏.广义梯度及其在盲信号分离中应用的研究[J].天津理工大学学报,2006,22(5):76-78. 被引量:1
  • 9易叶青,林亚平,林牧,李小龙,王雷.基于遗传算法的盲源信号分离[J].计算机研究与发展,2006,43(2):244-252. 被引量:4
  • 10姚毅,贾金玲,姚娅川.盲分离技术在识别生物信号中的应用[J].仪器仪表学报,2004,25(z1):155-156. 被引量:7

二级参考文献29

  • 1[1]HYVARINEN A,KARHUNEN J,Oja E.Independent oomponent analysis[M].New York:John Wiley,2001
  • 2[2]Cichocki A,Amari S.Adaptive blind Signal and image processing[M].New York:John Wiley,2002.
  • 3[3]COMON P.Independent component analysis,a new concept ?[J].Signal Processing,1994,36(3):287-314.
  • 4[4]CARDOSO J,LAHELD B.Equivariant adaptive source separation[J].IEEE Trans.Signal Processing,1996,44(11):3017-3030.
  • 5[5]AMARI S,CICHOCKI A,YANG H.A new learning algorithm for blind signal separation[C]//Advances in Neural Information Processing Systems 1995,1996,757-763.
  • 6[6]AMARI S,CHEN T,CICHOCKI A.Stability analysis of adaptive blind source separation[J].Neural Networks,1997,10(8):1345-1351.
  • 7[7]BELL A,SEJNOWSKI T.An information maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7 (6):1129-1159.
  • 8[8]DOUGLAS S.Equivariant adaptive selective transmission[J] IEEE Trans.Signal Processing,1999,47(5):1223-1231.
  • 9[1]Comon P. Independent component analysis, a newconcept ? [J]. Signal Processing, 1994,36: 287 ~ 314.
  • 10[2]Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7:1129~ 1159

共引文献9

同被引文献6

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部