期刊文献+

仿生模式识别在细菌基因组水平转移基因预测中的应用 被引量:2

Biomimetic Pattern Recognition for Prediction of Horizontal Gene Transfers in Bacteria Genomes
原文传递
导出
摘要 水平转移基因的预测对于生物进化过程的理解和物种之间遗传物质进行定性和定量的估计都有重要的意义。本文提出一种利用仿生模式识别原理来对细菌基因组水平转移基因进行预测的方法。仿生模式识别是基于同调连续性原理--特征空间中同类样本的连续性特性,强调用"认识"模式取代传统的模式"分类"与划分,它更接近于人类"认识"事物的特性。仿生模式识别理论已经成功应用于多镜头人脸身份确认,人脸识别,图像复原,语音识别等领域。我们采用超香肠神经元网络对水平转移基因进行识别,结果显示,仿生模式识别方法优于目前预测结果最好的八联核苷酸频率的打分算法,和基于支撑向量机的识别算法。特别是在对大肠杆菌(Escherichia coli K12)基因组,识别率分别提高了42.3%和30.5%。 The prediction of horizontal gene transfers(HGT)has important meaning to understanding the evolution and estimating the inherit material between species.A novel approach based on biomimetic pattern recognition(BPR)was proposed to predict the horizontal gene transfers in bacterial genomes.Biomimetic pattern recognition is much closed to the function of human being,which is based on"cognition"instead of"classification".The basis of BPR is the principle of homology-continuity(PHC),which means the difference between two samples of the same class must be gradually changed.The aim of BPR is to find an optimal covering in the feature space,which emphasized the"similarity"among homologous group members,rather than"division"in traditional pattern recognition.The application,such as human-face identification,face recognition,image restoration,speech recognition,has been realized successfully based on BPR.A neuron model called hyper sausage neuron(HSN)as a kind of covering units in BPR was used.The performance of the approach was superior to that of gene scoring method of 8-nucleotide composition(W8)and the support vector machine (SVM).The results of experiments showed the hit ratio for Escherichia coli K12 had a high improvement of 42.3% compared with that of W8,and 30.5% improvement compared with that of SVM.
作者 陈阳 王守觉
出处 《现代生物医学进展》 CAS 2008年第8期1518-1521,共4页 Progress in Modern Biomedicine
基金 国家自然科学基金(60474073) "863计划"资助项目(2006AA01Z123)
关键词 仿生模式识别 水平转移基因 超香肠神经元 同调连续性 大肠杆菌 Biomimetic pattern recognition Horizontal gene transfer Hyper sausage neuron Principle of homology-continuity
  • 相关文献

参考文献14

  • 1Vinga S, Almeida J. Alignment-free sequence comparison-a review[J]. Bioinformation, 2003, 19 (4): 513 -523.
  • 2王守觉.仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用[J].电子学报,2002,30(10):1417-1420. 被引量:151
  • 3貉睿.基于高维仿生信息学的生物序列分析方法研究[D].北京:中国科学院半导体研究所,2007.
  • 4Weng Jian-hong, Sun Xiao, Lu Zu-hong. Support vector machine for prediction of meiotic recombination hotspots and coldspots in Saccharomyces cerevisiae[J]. J Southeast Univ (Engl Ed), 22( 1 ):112-116.
  • 5Tsirigos A, Rigoutsos I. A new computational method for the detection of horizontal gene transfer events[J]. Nucleic Acids Res, 2005, 33(3 ): 922-933.
  • 6吴建盛,谢建明,周童,翁建洪,孙啸.基于支持向量机的细菌基因组水平转移基因预测[J].生物化学与生物物理进展,2007,34(7):724-731. 被引量:3
  • 7刘江江,陈吕军,温东辉,王军.水平基因转移应用于污染治理的研究进展[J].北京大学学报(自然科学版),2006,42(4):555-560. 被引量:6
  • 8Syvanen M. Horizontal gene transfer: evidence and possible consequences[J]. Annu Rev Genet, 1994, 28:237-261.
  • 9Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification[J]. Annu Rev Microbiol, 2001, 55:709-742.
  • 10Wang Shou-jue. Biomimetic pattern recognition[J]. Neural Networks Society (INNS, ENNS, JN S ) News letter, 2003, 1 ( 1 ): 3-5.

二级参考文献73

  • 1张辉,周洪祥,何振亚.基于主元分析神经网络的人脸特征提取及识别研究[J].模式识别与人工智能,1996,9(1):52-58. 被引量:10
  • 2W Bledsoe.Man-machine facial recognition[A].Panoramic Research Inc,Palo Alto,CA,1966,Rep PRI:22.
  • 3R Bruneli,T Poggio.Face recognition:features versus templates[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1993,15:1042-1052.
  • 4M Turk,A Pentland.Face recognition using eigenfaces[A].Proc of IEEE Conf On CVPR[C].1991.586-591.
  • 5Yongsheng Gao.Face recognition using line edge map[J].IEEE Trans Pattern Analysis and Machine Intelligence,June 2002,24(6):764-779.
  • 6Shang-Huang Lin,Sun-Yuan Kung,Long-Ji Lin.Face recognition/detection by probabilistic decision-based neural network[J].IEEE Trans On neural networks,Jan.1997,8(1):114-132.
  • 7N Intrator,D Reisfeld,Y Yeshurun.Extraction of facial features for recognition using neural networks[A].Proceedings of International Workshop on Automatic Face and Gesture Recognition[C].1995.260-265.
  • 8P J Phillips.Support vector machines applied to face recognition[A].In Advances in Neural Information Processing Systems 11[C].USA:MIT Press,1998.803-809.
  • 9G D Guo,S Z Li,K L Chan.Face recognition by support vector machines[J].Image and Vision Computing,2001,19(9-10):631-638.
  • 10Peter N Belhumeur,Joo Hespanha,David J Kriegman.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.

共引文献179

同被引文献88

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部