期刊文献+

Frictional Heat-Induced Phase Transformation on Train Wheel Surface 被引量:1

Frictional Heat-Induced Phase Transformation on Train Wheel Surface
原文传递
导出
摘要 By combining thermomechanical coupling finite element analysis with the characteristics of phase transformation [continuous cooling transformation (CCT) curve], the thermal fatigue behavior of train wheel steel under high speed and heavy load conditions was analyzed. The influence of different materials on the formation of the phase transformation zone of the wheel tread was discussed. The result showed that the peak temperature of wheel/track friction zone could be higher than the austenitizing temperature for braking. The depth of the austenitized region could reach a point of 0.9 mm beneath the wheel tread surface. The supercooled austenite is transformed to a hard and brittle martensite layer during the following rapid cooling process, which may lead to cracking and then spalling on the wheel tread surface. The decrease in carbon contents of the train wheel steel helps inhibit the formation of martensite by increasing the austenitizing temperature of the train wheel steel. When the carbon contents decrease from 0.7% to 0.4%, the Ac3 of the wheel steel is increased by 45 ℃, and the thickness of the martensite layer is de creased by 30 %, which is helpful in reducing the thermal cycling fatigue of the train wheel tread such as spalling. By combining thermomechanical coupling finite element analysis with the characteristics of phase transformation [continuous cooling transformation (CCT) curve], the thermal fatigue behavior of train wheel steel under high speed and heavy load conditions was analyzed. The influence of different materials on the formation of the phase transformation zone of the wheel tread was discussed. The result showed that the peak temperature of wheel/track friction zone could be higher than the austenitizing temperature for braking. The depth of the austenitized region could reach a point of 0.9 mm beneath the wheel tread surface. The supercooled austenite is transformed to a hard and brittle martensite layer during the following rapid cooling process, which may lead to cracking and then spalling on the wheel tread surface. The decrease in carbon contents of the train wheel steel helps inhibit the formation of martensite by increasing the austenitizing temperature of the train wheel steel. When the carbon contents decrease from 0.7% to 0.4%, the Ac3 of the wheel steel is increased by 45 ℃, and the thickness of the martensite layer is de creased by 30 %, which is helpful in reducing the thermal cycling fatigue of the train wheel tread such as spalling.
出处 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2008年第5期49-55,共7页 钢铁研究学报(英文版)
基金 High-Tech Research and Development Programof China (863 Program) (2006AA03Z514 and 2008AA030703)
关键词 train wheel steel thermal cycling fatigue FRICTION martensite transformation thermomechanical coupling train wheel steel thermal cycling fatigue friction martensite transformation thermomechanical coupling
  • 相关文献

参考文献2

二级参考文献9

共引文献28

同被引文献19

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部