期刊文献+

p-群的Burnside环的增广理想的商群的结构

The structure of powers of the augmentation ideal and their consecutive quotients for the Burnside ring of p-Group
下载PDF
导出
摘要 目的讨论两类由p-群出发构造的Burnside环的增广理想的商群的结构。方法利用轨道、稳定子和基底的关系,归纳证明。结果确定了该商群的结构。结论回答了关于此类Burnside环的Karpilovsky问题。 Aim To discuss the consecutive quotients of powers of the augmentation ideal for the Burnside ring of p-group discussed. Methods The results can be obtained and proved by using the relation among the orbit, the stabilizer. Results The structure for such quotients is established for such p-group. Conclusion The results answered an open problem of Karpilovsky for this kind of Burnside ring.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期207-209,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10271094)
关键词 P-群 Burnside环 增广理想 商群 p-group Burnside ring augmentation ideal consecutive quotient
  • 相关文献

参考文献7

  • 1BRUCE A M.An Algebraic Introduction to K-Theory[M].Combridge:Combridge University Press,2002:135-140.
  • 2PASSI I B S.Group Ring and Their Augmentation Ideals[M].New York:Springer-Verlag,1979.
  • 3KARPILOVSKY G.Commutative Group Algebra[M].New York:Marcel Dekker,1983:199.
  • 4HALES A W.Augmentation terminals of finite abelian groups[J].Berlin Springer-Verlag Lecture Notes in Math,1983,1006:720-733.
  • 5TANG Guo-ping.On a question of Karpilovsky[J].Alge-bra Colloquium,2003,10 (1):11-16.
  • 6武海波,唐国平.整群环的增广理想之幂的基底及其商群的结构[J].西北大学学报(自然科学版),2005,35(1):3-6. 被引量:3
  • 7WEIBEL C A.An Introduction to Homologieal Algebra[M].Beijing:China Machine Press,2004:68.

二级参考文献7

  • 1SHENDe-cheng ZHAOXian-zhong ZHANGWen-tao.Band Г-semigroups.西北大学学报:自然科学版,2000,30(4):280-280.
  • 2PARMENTER M M. A basis for powers of the augmentation ideals[J]. Algebra Colloquium, 2001, 8(2) : 121-128.
  • 3BAK A, VAVILOV N. Presenting powers of augmentation ideals and Pfister forms [ J ]. K-Theory, 2000, 20 : 299-309.
  • 4PASSI I B S. Group Rings and Their Augmentation Ideals[M]. New York: Springer-Verlag, 1979.
  • 5KARPILOVSKY G. Commutative Group Algebra [ M ].New York: Marcel dekker, 1983.
  • 6HALES A W. Augementation terminals of finite abelian groups[A]. GOBEL L, LADY L, MADER A. Abelian Group Theory[ C]. Berlin:Springer-Verlag, 1983. 720-733.
  • 7TANG Guo-ping. On a question of Karpilovsky [ J ]. Algebra Collquium, 2003,10( 1 ) :11-16.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部