期刊文献+

一个新型的NTRU类数字签名方案 被引量:19

A Novel NTRU-Class Digital Signature Scheme
下载PDF
导出
摘要 NTRU类数字签名方案的一个共同缺陷是签名值会泄露私钥的一些信息.针对这个缺陷,当前已经有若干有效攻击.该文提出一个新型的NTRU类数字签名方案.新方案具有与R-NSS相似的结构,但有若干新颖的设计.文中给出新方案的3个结果:(1)由公钥恢复出私钥的困难性基于若干格上的最小向量问题(SVP);(2)由公钥伪造签名的困难性等价于某个格上的最近向量问题(CVP);(3)每个签名值仍然会泄露私钥的一些信息,但无限制泄露的最终形式只是关于私钥的一组复杂的非线性方程. NTRU-class digital signature schemes have a common weakness that signature value will leak information on the private key. According to this weakness, several effective attacks were pro- posed against these signature schemes. This paper presents a novel NTRU-class digital signature scheme. The new signature scheme has a similar structure to R-NSS, but with several novel designs. This paper has obtained following three results about the new scheme: (1) The hardness of recovering the private key from the public key is based on the hardness of the shortest vector problems(SVP) of several lattices; (2) The hardness of forging a signature is equivalent to the hardness of the closest vector problem(CVP) of some lattice;(3) Each signature will leak information on the private key, but the final shape of the unlimited leakage is just a group of complicated non-linear equations.
作者 胡予濮
出处 《计算机学报》 EI CSCD 北大核心 2008年第9期1661-1666,共6页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2007CB311201) 国家密码发展基金资助
关键词 NTRU 数字签名 格上的最小向量问题(SVP) 格上的最近向量问题(CVP) NTRU digital signature the Shortest Vector Problem of lattice(SVP) the Closest Vector Problem of lattice (CVP)
  • 相关文献

参考文献14

  • 1Hoffstein J, Pipher J, Silverman J H. NTRU.. A new high speed public key cryptosystem//Proceedings of the Algorithm Number Theory (ANTS Ⅲ). LNCS 1423. Springer- Verlag, 1998: 267-288
  • 2Coppersmith D, Shamir A. Lattice attacks on NTRU//Proceedings of the Eurocrypt'97, LVCS-IACR. Springer-Verlag, 1997
  • 3Hoffstein J, Pipher J, Silverman J H. Enhanced encoding and verification methods for the NTRU signature scheme. Version 2, May 30, 2001. http: //www. ntru. com
  • 4Hoffstein J, Howgrave-Graham N, Pipher J, Silverman J H, Whyte W. NTRUSign: Digital signatures using the NTRU lattice//Proceedings of the CT-RSA'03. LNCS 2612. Springer-Verlag, 2003:122-140
  • 5Gentry C, Szydlo M. Cryptanalysis of the revised NTRU signature scheme//Proceedings of the Advances in Cryptology- Eurocrypt' 02. LNCS 2332. Springer-Verlag, 2002:299-320
  • 6Nguyen P Q, Oded R. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures//Proceedings of the Advances in Cryptology-EUROCRYPTr06. LNCS 4004. Springer-Verlag, 2006:215-233
  • 7Lenstra A K, Lenstra H W, Lovasz L. Factoring polynomials with integer coefficients. Mathematische Annalen, 1982, 261:513-534
  • 8Schnorr C P. A hierarche of polynomial time lattice basis reduction algorithm. Theoretical Computer Science, 1987, 53 : 201-224
  • 9Schnorr C P. Block reduced lattice basis and successive minima. Combinatorics, Probability and Computing, 1994, 3: 507-522
  • 10Schnorr C P, Euchner M. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical Programming, 1994, 66:181-199

同被引文献143

引证文献19

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部