摘要
设P是一个域,Γn是满足{aEij|i,j=1,2,…,n,a∈P}Γn Mn(P)的一个乘法半群,其中Mn(P)定义P上所有n×n矩阵组成的乘法半群.证明了一个结果:若f∶Γn→Mn(P)是一个保零矩阵的乘法映射,Fij(i,j=1,2,…,n)是Mn(P)中n2个矩阵,且满足FijFkl=δjkFil(i,j,k,l=1,2,…,n),则存在可逆阵S∈Mn(P),使得f(Fij)=S-1FijS,i,j=1,2,…,n.由此刻画了Γn的保迹反乘法映射.
Given field P and multiplicative semigroup Гn satisfying {αEij | i,j = 1,2, ……,n,α∈ p}lahtain in Гn lahtain inMn(P), where Mn (P) denotes the semigroup of all n×n matrices over P, a result is: suppose that multiplicative mapping f : Гn→Mn (P) preserves zero matrices, and Fij (i,j = 1,2, ..., n), the matrices of Mn (P), satisfy Fij Fld = δjk Fil ( i , j, k, l = 1,2,..., n ) , then there exists an invertible S ∈ Mn(P) such that f(Fij)=S^-1FijS, i,j=1,2,...,n. By the result trace-preserving anti-multiplicative mapping on Гn is characterized.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2008年第3期217-219,244,共4页
Journal of Hubei University:Natural Science
基金
湖北省教育厅科学技术研究重点项目(D200626001)资助
关键词
矩阵代数
乘法映射
反乘法映射
保迹
matrix algebra
multiplicative mapping
anti-multiplicative mapping
trace-preserving