期刊文献+

矩阵代数的乘法映射与反乘法映射

Multiplicative and anti-multiplicative mappings on matrix algebra
下载PDF
导出
摘要 设P是一个域,Γn是满足{aEij|i,j=1,2,…,n,a∈P}Γn Mn(P)的一个乘法半群,其中Mn(P)定义P上所有n×n矩阵组成的乘法半群.证明了一个结果:若f∶Γn→Mn(P)是一个保零矩阵的乘法映射,Fij(i,j=1,2,…,n)是Mn(P)中n2个矩阵,且满足FijFkl=δjkFil(i,j,k,l=1,2,…,n),则存在可逆阵S∈Mn(P),使得f(Fij)=S-1FijS,i,j=1,2,…,n.由此刻画了Γn的保迹反乘法映射. Given field P and multiplicative semigroup Гn satisfying {αEij | i,j = 1,2, ……,n,α∈ p}lahtain in Гn lahtain inMn(P), where Mn (P) denotes the semigroup of all n×n matrices over P, a result is: suppose that multiplicative mapping f : Гn→Mn (P) preserves zero matrices, and Fij (i,j = 1,2, ..., n), the matrices of Mn (P), satisfy Fij Fld = δjk Fil ( i , j, k, l = 1,2,..., n ) , then there exists an invertible S ∈ Mn(P) such that f(Fij)=S^-1FijS, i,j=1,2,...,n. By the result trace-preserving anti-multiplicative mapping on Гn is characterized.
作者 胡付高
机构地区 孝感学院数学系
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2008年第3期217-219,244,共4页 Journal of Hubei University:Natural Science
基金 湖北省教育厅科学技术研究重点项目(D200626001)资助
关键词 矩阵代数 乘法映射 反乘法映射 保迹 matrix algebra multiplicative mapping anti-multiplicative mapping trace-preserving
  • 相关文献

参考文献10

  • 1Li C K, Tsing N K. Linear preserver problems: a brief introduction and some special techniques[J]. Lin Alg Appl, 1992, 162-164:217-235.
  • 2Omladic M, Semrl P. Spectrum-preserving additive maps[J]. Lin Alg Appl, 1991,153 : 67-72.
  • 3Guterman A, Li C K, Semerl P. Some general techniques on linear preserver problems[J]. Lin Alg Appl, 2000,315: 61-81.
  • 4Beasley L B, Pullman N L. Linear operators preserving idempotent matrices over field[J]. Lin Alg Appl, 1991,146 : 7-20.
  • 5曹重光,张显.幂保持加法映射[J].数学进展,2004,33(1):103-109. 被引量:4
  • 6Hochwald S H. Multiplicative maps on matrices that preserve the spectrum[J]. Lin Alg Appl, 1994,212-213: 339- 351.
  • 7程美玉,李兴华.保持矩阵迹的乘法映射[J].数学杂志,2004,24(1):4-6. 被引量:7
  • 8Molnar Lajos. Multiplicative maps on ideals of operators which are local automorphisms[J]. Acta Sci Math(Szeged), 1999,65 (3-4) : 727-736.
  • 9Molnar Lajos. Some multiplicative preservers on B(H)[J]. Lin Alg Appl, 1999,301:1-13.
  • 10胡付高.全矩阵环的一类基[J].数学的实践与认识,2007,37(10):188-191. 被引量:4

二级参考文献16

  • 1[1]Li C K, Tsing N K. Linear preserver problems: a brief introduction and some special techniques [J]. Lin.Alg. Appl., 1992, 162-164: 217- 235.
  • 2[2]Pierce S. et. al. A survey of linear problems [J]. Lin. Multi. Alg., 1992, 33: 1-129.
  • 3[3]Guterman A, Li C K, Semrl P. Some general technigues on linear preserve problems [J] Lin. Alg. Appl.,2000, 315: 61-81.
  • 4[4]Omladic M, Serml P. Additive mappings preseving operators of rank one [J]. Lin. Alg. Appl., 1993, 182:239-256.
  • 5[5]Bell J, Sourour A R. Additive rank-one mappings on triangular matrix algebras [J]. Lin. Alg. Appl.,2000, 312:13-33.
  • 6[6]Omladic M, Serml P. Spectrum-preserving additive maps [J]. Lin. Alg. Appl., 1991, 153: 67-92.
  • 7[7]Cao Chongguang, Zhang Xian, Additive operators preserving idempotent matrices over fi ld and applications [J]. Lin. Alg. Appl., 1996, 248: 327-338.
  • 8[8]Zhang Xian. Cao Chongguang, Bu Changjiang. Additive maps preserving M - P inverses of matrices over field [J]. Lin. Multi. Alg., 1999, 46: 199-211.
  • 9[9]Chan G H, Lim M H. Linea preservers on powers of matrices [J]. Lin. Alg. Appl., 1992, 162-164: 615-626.
  • 10[10]Beasley L B, Pullman N L. Linear operators preserving idempotent matrices over field [J]. Lin. Alg.Appl., 1991, 146: 7-20.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部