期刊文献+

面向语义的精简化多关系频繁模式发现方法 被引量:1

Semantically condensed multi-relational frequent pattern discovery based on conjunctive query containment
下载PDF
导出
摘要 多关系频繁模式发现能够直接从复杂结构化数据中发现涉及多个关系的复杂频繁模式,避免了传统方法的局限。有别于主流基于归纳逻辑程序设计技术的方法,提出了基于合取查询包含关系的面向语义的精简化多关系频繁模式发现方法,具有理论与技术基础的新颖性,解决了两种语义冗余问题。实验表明,该方法在可理解性、功能、效率以及可扩展性方面具有优势。 Multi-relational data mining is one of rapidly developing subfields of data mining. Multi-relational frequent pattern discovery approaches directly look for frequent patterns that involve multiple relations from a relational database. While the state-of-the-art of multi-relational frequent pattern discovery approaches is based on the inductive logical programming techniques, we propose an approach to semantically condensed multi-relational frequent pattern discovery based on conjunctive query containment in terms of the theory and technique of relational database. With the novelty of the groundwork, the proposed approach deals with two kinds of semantically redundant problems. In theory and experiments, it shows that our approach improve the understandability, function, efficiency and scalabillty of the state-of-the-art of multi-relational frequent pattern discovery approaches.
出处 《中国工程科学》 2008年第9期47-53,共7页 Strategic Study of CAE
基金 国家自然科学基金资助项目(60675030) 国家科技成果重点推广计划资助项目(2003EC000001)
关键词 多关系数据挖掘 频繁模式发现 合取查询 精简化模式 multi-relational data mining frequent pattern discovery conjunctive query condensed pattern
  • 相关文献

参考文献13

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [ A]. Proceedings of the 20th International Conference on Very Large Data Bases [ C ]. Morgan Kaufmann Publishers, Inc, San Francisco, CA, USA, 1994. 487 -499
  • 2Hipp J, Guntzer U, Nakaeizadeh G. Algorithms for association rule mining - a general survey and comparison [J]. ACM SIGKDD Explorations, 2000, 2(1 ) : 58 -64
  • 3Dzeroski S, Lavrac N. Relational Dta Mining [M]. Springner, Berlin,:2001
  • 4Dehaspe L, Toivonen H. Discovery of frequent datalog patterns [ J]. Data Mining and Knowledge Discovery, 1999,3 (1) : 7 -36
  • 5Nijssen S, Kok J N. Faster association rules for multiple relations [ A ]. Proceedings of the 17th International Joint Conference on Artificial Intelligence [ C ]. Morgan Kaufmann Publishers, Inc, Seattle, USA, 2001. 891 -896
  • 6De Raedt L, Ramon J. Condensed representations for inductive logic programming [ A ]. Proceedings of the Ninth International Conference on the Principles of Knowledge Representation and Reasoning [ C ]. AAAI Press, USA, 2004. 438 - 446
  • 7Ullman J. Principles of Database and Knowledge - base Systems, Volume 1 [ M]. Computer Science Press, USA, 1988
  • 8Miguel R, Nieves R. A general procedure to check eonjtmctive query eontainrnent [J]. Artificial Intelligence, 21302, 38(7) : 489 -529
  • 9Mannila H, Toivonen H. Levelwise search and borders of theories in knowledge discovery [ J]. Data Mining and Knowledge Discovery, 1997, 1(3) : 241 -258
  • 10Wrobel S. An algorithm for multi - relational discovery of subgroups [ A ]. Proceedings of the First European Symposium on Principles of Data Mining and Knowledge Discovery [C]. Springer, Berlin, Germany, 1997. 78-87

同被引文献13

  • 1张伟,杨炳儒,钱榕.多关系频繁模式发现研究[J].计算机科学,2007,34(7):158-164. 被引量:3
  • 2何军,刘红岩,杜小勇.挖掘多关系关联规则[J].软件学报,2007,18(11):2752-2765. 被引量:38
  • 3Getoor L. Multi-relational data mining using probabilistic relational models:Research summary[A].2001.6-17.
  • 4Dehape L,De Raedt L. Mining association rules in multiple relations[A].Beilin:Springer-Verlag,1997.125-132.
  • 5Nijssen S,Kok J. Faster association rules for multiple relations[A].USA:Morgan Kaufmann,2001.819-896.
  • 6Jense V C,Soparkar N. Frequent itemset counting across multiple tables[A].Beilin:Springer-Verlag,2000.49-61.
  • 7Ng E K K,Fu A W,Wang K. Mining association rules from stars[A].Maebashi.Washington:IEEE Press,2002.322-329.
  • 8Jiménez A,Berzal F,Cubero J C. Frequent Itemset Mining in Mtdtirelational Databases[A].Beilin:Springer-Verlag,2009.15-24.
  • 9Hon Wei,Yang Bing-ru,Xie Yong-hong. Mining Multi-relational Frequent Patterns in Data Streams[A].Washington:IEEE Press,2009.205-209.
  • 10Han Jia-wei;Kamber M;范明;孟小峰.数据挖掘概念与技术[M]北京:机械工业出版社,2007146-152.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部