期刊文献+

离散粒子群算法在不确定动态船队规划中的应用

Application of the DPSO in the Uncertain Multi-stage Fleet Planning
下载PDF
导出
摘要 分析航运公司船队规划的特点,考虑船舶技术经济指标随船龄的变化和市场的不确定性,建立基于不确定性的动态船队规划模型,并考虑到不确定性规划求解的复杂性,把带有模糊、随机参数的机会约束转化为它的清晰等价类并根据船队规划问题具有大规模、离散性和整数性等特点,采用离散粒子群算法进行求解,通过实例说明该方法的可行性。 Considering the characteristics of fleet planning, as well as the technical and economic indicators of ships varying with time and the uncertainty of market, the multi-stage fleet planning was established. In light of the calculation difficulties of uncertain planning, the stochastic and fuzzy parameters were transformed to certain equivalence. According to the characteristics of large-scale, discrete and integer, the discrete particle swarm optimization (DPSO) was adopted to provide a new way of thinking for large-scale fleet plarming.
作者 苏绍娟
出处 《船海工程》 北大核心 2008年第4期91-94,共4页 Ship & Ocean Engineering
关键词 动态船队规划 数学模型 不确定性参数 DPSO multi-stage fleet planning mathematic model uncertain parameter discrete particle swarm optimization (DPSO)
  • 相关文献

参考文献8

二级参考文献32

  • 1侯云鹤,鲁丽娟,熊信艮,程时杰,吴耀武.改进粒子群算法及其在电力系统经济负荷分配中的应用[J].中国电机工程学报,2004,24(7):95-100. 被引量:157
  • 2周晖,周任军,谈顺涛,周皓.用于无功电压综合控制的改进粒子群优化算法[J].电网技术,2004,28(13):45-49. 被引量:33
  • 3张鲁峰.[D].上海:上海交通大学船舶与海洋工程学院,2000.
  • 4Kennedy J, Eberhart R. Particle swarm optimization [C].Proceedings of IEEE International Conference on Neural Networks,1995(4): 1942-1948.
  • 5Fogel LJ, Owens A J, Walsh M J, Artificial Intelligence through Simulation Evolution [M]. John Wiley & Sons, New York, 1966.
  • 6D.E.Goldberg. Genetic Algorithm in Search, Optimization, and Machine Learning [M]. Addison-Wesley Publishing Company Inc. 1985.
  • 7Boeringer D W, Werner D H. A comparison of particle swarm optimization and genetic algorithms for a phased array synthesis problem [C]. Antennas and Propagation Society International Symposium, 2003. IEEE, 2003(1): 181-184.
  • 8Kumar A I S, Dhanushkodi K, Kumar J J et al. Particle swarm optimization solution to emission and economic dispatch problem [C].TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, 2003, 1: 435-439.
  • 9Zheng Y L, Ma L H, Zhang L Y et al. On the convergence analysis and parameter selection in particle swarm optimization[C].Proceedings of Internafonal Conference on Machine Learning and Cybernetics 2003:1802-1807.
  • 10Zheng Yongling, Ma Longhua, Zhang Liyan et al. On the convergence analysis and parameter selection in particle swarm optimization[C]. IEEE International Conference on Machine Learning and Cybernetics, 2003, 3: 1802-1807.

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部