期刊文献+

二氧化硫对大麦幼苗的氧化损伤效应 被引量:4

Oxidative damage induced by sulfur dioxide in barley seedlings
下载PDF
导出
摘要 以大麦(Hordeum vulgare L.)为材料,研究SO2水合物NaHSO3-Na2SO3混合液(1∶3,mmol·L-1:mmol·L-1)对大麦幼苗的氧化损伤效应。结果表明,大麦幼苗的生长受SO2水合物浓度和作用时间的影响,低浓度促进幼苗生长,高浓度抑制生长,抑制效应随作用时间的延长而增强;在胁迫6d后,大麦叶组织中的超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性增高,还原型谷胱甘肽(GSH)含量上升。加入外源抗氧化剂抗坏血酸(AsA)后,SO2水合物对大麦幼苗生长的抑制效应得到缓解,膜脂过氧化产物丙二醛(MDA)含量降低。研究结果表明:SO2水合物处理能引起大麦幼苗氧化胁迫,诱导抗氧化酶表达增强、活性氧清除能力提高,但活性氧的增加又会引起细胞氧化损伤,SO2对植物的伤害与其对细胞的氧化损伤有关。 Effects of sulfur dioxide (SO2) hydrates on seedling growth and antioxidant enzymes activities were investigated in barley (Hordeum vulgare L.). A mixture of sodium bisulphite and sodium sulfite (1:3, mmol. L^-1: mmol· L^-1, pH 7.0), at various concentrations from 0.10 to 10 mmol· L^-1, was used for the treatments. The results showed that seedling growth was dependent on treatment concentrations and duration. The inhibition of root and shoot growth occurred in concentration- and period- dependent manners after seedlings exposed to the hydrates at concentrations of 2.5 to 10.0 mmol· L^-1, while the inhibition on root growth is stronger than that on shoot. However, the shoot growth was accelerated after exposure to the hydrates at concentrations of 0.1 to 0.5 mmol. Lj. SOD activity increased and showed significant increase in barley exposed to the hydrates at concentrations of 0.1 mmol· L^-1 or 2.5 mmol· L^-1 for 6 d, while CAT activity increased in 0.1 mmol. LI treatment group but decreased significantly in 2.5 mmol· L^-1 and 10 mmol· L^-1 SO2 treated groups, GSH-Px activity and GSH content increased in all SO2 treated groups. The pretreatment with exogenous ascorbic acid can alleviate oxidative damage caused by the hydrates, leading to decreases in both malonic aldehyde (MDA) content and seedling growth inhibition in barley. Present results indicate that exposure to higher concentration of sulfur dioxide can cause seedling growth inhibition and oxidative stress. The inhibition of seedling growth is associated with oxidative damage induced by SO2 stress.
出处 《生态环境》 CSCD 北大核心 2008年第4期1442-1445,共4页 Ecology and Environmnet
基金 由国家自然科学基金项目(30470318) 山西省留学回国基金项目(2006) 山西省自然科学基金项目(20041080)联合资助
关键词 二氧化硫 大麦 氧化胁迫 sulfur dioxide Hordeum vulgate oxidative stress
  • 相关文献

参考文献14

  • 1NOJI M, SAITO M, NAKAMURA M, et al. Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants[J]. Plant Physiology, 2001,126(3): 973-980.
  • 2Yi HuiLan, Liu Jing, Zlaeng Ke. Effect of sulfur dioxide hydrates exposure on cell cycle, sister chromatid exchange and micronuclei in barley seedlings[J]. Ecotoxicology and Environmental Safety, 2005, 62 421-426.
  • 3钱永常,余叔文.SO_2对植物的氧化作用和植物的抗氧化作用[J].植物生理学通讯,1991,27(5):326-331. 被引量:39
  • 4MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490-498.
  • 5SHAPIRO R. Genetic effects of bisulfite (sulfur dioxide)[J]. Mutation Research, 1977, 39: 149-176.
  • 6FLOHE L, GONZLER W A. Assay of glutathione peroxidase[J]. Methods in Enzymology, 1984, 105:114-120.
  • 7ELLMAN G L. Tissue sulflaydryl groups[J]. Archives of Biochemistry and Biophysics, 1959, 82(1): 70-77.
  • 8王建华,刘鸿先,徐同.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989,25(1):1-7. 被引量:613
  • 9GECHEV T, WILLEKENS H, MONTAGU M V, et al. Different responses of tobacco antioxidant enzymes to light and chilling stress[J]. Journal of Plant Physiology, 2003, 160(5): 509-515.
  • 10陈坤明,宫海军,王锁民.植物谷胱甘肽代谢与环境胁迫[J].西北植物学报,2004,24(6):1119-1130. 被引量:56

二级参考文献78

  • 1MAY M J, VERNOUX T, LEAVER C, MONTAGU M V, INZE′ D. Glutathione homeostasis in plant: Implications for environmental sensing and plant development[J]. J. Exp. Bot., 1998, 49: 649-667.
  • 2CNUBBEN N H P, RIETJENS I M C M, WORTELBOER H, VAN ZANDEN J, VAN BLADEREN P J. The interplay of glutathione-related processes in antioxidant defense[J]. Environmental Toxicology and Pharmacology, 2001, 10: 141-152.
  • 3HE′ROUART D, BAUDOUIN E, FRENDO P, HARRISON J, STANTOS R, JAMET A, VAN DE SYPE G, TOUATI D, PUPPO A. Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume-rhizobium symbiosis[J].Plant Physiol. Biochem., 2002, 40: 619-624.
  • 4MATE′S J M, PE′REZ-GO′MEZ C, NU′NˇEZ DE CASTRO I, ASENJO M, MA′RQUEZ J. Glutathione and its relationship with intracellular redox status, oxidative stress and cell proliferation/death[J]. The International Journal of Biochemistry & Cell Biology, 2002, 34: 439-458.
  • 5MULCAHY R I, GIPP J J. Identification of a putative antioxidant responsive element in the 5'-flanking region of the human γ-glutamylcysteine synthetase heavy subunit gene[J]. Biochem. Biophys. Res. Comm., 1995, 209: 227-233.
  • 6PANDOLFI P P, SONATI F, RIVI R, MASON P, GROSVELD F, LUZZATTO L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress[J]. EMBO J., 1995, 14: 5 209-5 215.
  • 7JUHNKE H, KREMS B, KO TTER P, ENTIAN K-D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress[J]. Mol. Gen. Genet., 1996, 252: 456-464.
  • 8SLEKAR K H, KOSMAN D J, CULOTTA V C. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection[J]. J. Biol. Chem., 1996, 271: 28 831-28 836.
  • 9STORZ G, TARTAGLIA L A, AMES B N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation[J]. Science, 1990, 248: 189-194.
  • 10IZAVA S, INOUE Y, KIMURA A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae[J]. FEBS letters, 1995, 368: 73-76.

共引文献704

同被引文献85

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部