期刊文献+

河流网泥沙输移模型中的标度规律 被引量:2

Scaling Laws in A Dynamical Model for the Sediment Transport in River Network
下载PDF
导出
摘要 为了模拟河流网的泥沙输运过程,根据水流携沙力受河道冲淤的反馈自调节机制,提出了枯水期河流网泥沙输移的动力学模型.考虑枯水期水沙动力学过程类似于固定流量和含沙量条件下的稳态,用该模型模拟预测了水流携沙系数(表征携沙力)和冲淤量沿河道分布的标度规律.结果表明,携沙系数随河段的递增满足负幂律分布;平均冲淤量随河段的递增满足指数规律分布. To investigate sediment transport process in river network, a dynamical model in a lower-water season is proposed based on the self-adjustment mechanism that there exists a feedback between the sediment-carrying capacity of stream are no large fluctuations in stream process on the river network can be and the erosion or sedimentation occurred in the channel. Since there flow and sediment concentration simulated by the steady solution in a lower-water season, the real of the model. The dynamics of the model reveals that the distributions of sediment-carrying coefficient (indicating the sediment-carrying capacity) and the quantity of erosion-sedimentation along the channel in the downriver direction may be dominated by scaling laws. They demonstrate that the average quantity of erosion-sedimentation exponently depends on the river segments, and the sediment-carrying coefficient distributes in power law along the channel.
出处 《宁夏大学学报(自然科学版)》 CAS 北大核心 2008年第3期217-221,共5页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金项目(10565002) 教育部新世纪优秀人才支持计划资助项目(NCET-06-0914) 宁夏大学自然科学基金资助项目(ZR0631)
关键词 携沙系数 冲淤量 泥沙输移动力学模型 标度规律 sediment-carrying coefficient quantity of erosion-sedimentation dynamical model for sedimenttransport scaling law
  • 相关文献

参考文献13

  • 1LILJEROS F, EDLING C, AMARAL L A N, et al. The web of human sexual contacts[J]. Nature, 2001, 411: 908-909.
  • 2EBEL H, MIELSCH L I, BORBHOLDT S. Scale-free topology of E-mail networks [J]. Phys Rev E, 2002, 66: 035103(R1-4).
  • 3MILGRAM S. Six degrees of separation [J]. Psychology Today, 1967, 2: 60-64.
  • 4ALBERT R, JEONG H, BARABASI A L. Diameter of the word wide web[J]. Nature, 1999, 401: 130-131.
  • 5KINNEY R, CRUCITTI P, ALBERT R, et al. Modeling cascading failures in the North American power grid[J]. The European Physical Journal B, 2005, 46 : 101-107.
  • 6ALBERT R, ALBERT I, NAKARADO G L. Structural vulnerability of the North American power grid [J]. Phys Rev E, 2004, 69: 02510a(R1-4).
  • 7BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286 : 509-512.
  • 8BARABASI A L, ALBERT R, JEONG H. Meanfield theory for scale-free random networks [J]. Physica A, 1999, 272:173-187.
  • 9WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks [J]. Nature, 1998, 393: 440-442.
  • 10PASTOR-STATORRAS R, VESPINGNANI A. Epidemic spreading in scale-free networks [J]. Phys Rev Lett, 2001, 86(4) : 3200-3203.

共引文献7

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部