期刊文献+

近邻渐进直推式支持向量机算法

Near Neighbor Progressive Transductive Support Vector Machine Algorithm
下载PDF
导出
摘要 针对渐进直推式支持向量机算法训练速度慢和学习性能不稳定的问题,提出一种近邻渐进直推式支持向量机算法。该算法利用支持向量机中支持向量信息,选择支持向量附近的无标签样本点进行标注,采用支持向量预选取的方法减少训练集的规模,提高算法的速度。实验结果表明了该算法的有效性。 Progressive Transductive Support Vector Machine(PTSVM) has some drawbacks such as slower training speed and unstable learning performance. This paper proposes a Near Neighbor Progressive Transductive Support Vector Machine(N2pTSVM) learning algorithm. Making full use of support vectors in SVM, the method selects new unlabeled samples near support vectors. In addition, the method introduces pre-extracting support vector algorithm to reduce the calculation complexity. Experimental results show its validity.
作者 李云飞
出处 《计算机工程》 CAS CSCD 北大核心 2008年第17期191-192,195,共3页 Computer Engineering
基金 渭南师范学院科研计划基金资助重点项目(07YKF013)
关键词 渐进直推式支持向量机 无标签样本 近邻 Progressive Transductive Support Vector Machine(PTSVM) unlabeled sample near neighbor
  • 相关文献

参考文献6

  • 1Vapnik V. Statistical Learning Theory[M]. New York, USA: Wiley Press, 1998.
  • 2Chapelle O, Vapnik V, Weston J. Transductive Inference for Estimating Values of Functions Advances in Neual Information Processing Systems 11 [M]. [S. l.]: MIT Press, 1999: 421-427.
  • 3陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88
  • 4沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法[J].计算机应用,2007,27(6):1463-1464. 被引量:10
  • 5Ding A. Pre-extracting Support Vector by Adaptive Projective Algorithm[C]//Proceedings of the 6th International Corference on Signal Processing. Beijing, China: [s. n.], 2002, (1): 21-24.
  • 6Joachims T. Making Large-scale SVM Learning Practical[M]. [S. l.]: MIT Press, 1999.

二级参考文献22

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 3[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 4[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 5[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 6[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 7[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 8[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 9[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.
  • 10[10]Joachims T. Making large-scale SVM learning practical. In: Scholkopf, Burges C, Smola A, eds. Advances in Kernel Methods--Support Vector Learning B. MIT Press, 1999.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部