期刊文献+

甲基弯菌IMV 3011细胞生物催化二氧化碳制甲醇 被引量:7

Methanol Production from CO_2 by Resting Cells of Methylosinus trichosporium IMV 3011
原文传递
导出
摘要 甲基弯菌IMV 3011可以催化二氧化碳生物转化生成甲醇.在细胞悬浮液中充入二氧化碳后,反应一段时间后在反应液中检测到了甲醇产生.但是甲烷氧化细菌细胞合成甲醇的能力受到了细胞内还原当量的限制.研究发现,细胞内贮存的聚-β羟基丁酸(PHB)分解后能够产生还原当量,可以提高甲醇的产生能力.本文通过改变培养基中氮和铜的起始浓度对PHB积累量进行调节来提高甲基弯菌IMV 3011还原二氧化碳生成甲醇的能力.结果表明,随着细胞内PHB含量的增加甲醇的产生能力也会增加.当细胞内PHB的积累量达到38.6%时,将二氧化碳还原成甲醇的能力最强.当PHB的积累量超过38.6%时细胞生成甲醇的能力反而降低. Methanol production from carbon dioxide was successfully achieved using resting cells of Methylosinus trichosporium IMV 3011 as biocatalysts. Carbon dioxide is reduced to methanol and extracellular methanol accumulation has been found in the carbon dioxide incubations. However, resting cells of methanotrophs have a finite or intrinsic methanol production capacity due to a limiting supply of intracellular reducing equivalent. It has been found that the catabolism of stored Poly-β-Hydroxybutyrate (PHB) can provide intracellular reducing equivalents to improve the intrinsic methanol production capacity. The initial concentration of nitrogen and copper in the culture medium were studied for the accumulation of PHB by M. trichosporium IMV 3011, to expand its potential uses in methanol production from carbon dioxide reduction. The results showed that the total methanol production capacity was improved with increasing PHB content in cells. Resting cells containing 38.6% PHB exhibited the highest total methanol production capacity. But higher PHB accumulation adversely affected the total methanol production capacity.
出处 《分子催化》 EI CAS CSCD 北大核心 2008年第4期356-361,共6页 Journal of Molecular Catalysis(China)
基金 教育部新世纪优秀人才支持计划(NCET050356) 华东理工大学生物反应器工程国家重点实验室开放课题
关键词 二氧化碳还原 合成甲醇 甲烷氧化细菌 聚-β羟基丁酸 还原当量 Carbon dioxide reduction Methanol production Methanotroph Poly-β-hydroxybutyrate Reducingequivalent
  • 相关文献

参考文献13

  • 1崔俊儒,辛嘉英,牛建中,夏春谷,李树本.甲烷氧化细菌催化二氧化碳生物合成甲醇的研究[J].分子催化,2004,18(3):214-218. 被引量:12
  • 2Davis J B, Coty V F, Stanley J P. J. Bacteriol. [ J ], 1964, 88:468-472
  • 3Henry S M, Grbic-Galic D. Appl. Environ. Microbiol. [J], 1991,57:236-244
  • 4吴小梅,辛嘉英,张颖鑫,翟宗德,夏春谷.无溶剂体系中的脂肪酶催化反应研究进展[J].分子催化,2006,20(6):597-603. 被引量:9
  • 5Henrysson T, McCarty P L, Appl. Environ. Microbiol. , 1993, 59:1 602 - 1 606
  • 6Chu K H, Alvarez-Cohen L. Water Environ. Res. [ J ], 1996, 68:76-82
  • 7Xin Jia-ying, Zhang Ying-xin, Zhang Shuai, et al. J. Basic Microbiol. [ J ], 2007, 47 : 426 - 435
  • 8Shah N N, Hanna M L, Taylor R. Biotechnol. Bioenginee. [J], 1996, 49:161 - 171
  • 9Park S, Hanna M L, Taylor R T, Droege M W. Biotechnol. Bioeng. [J], 1991,38:423-433
  • 10Baik M H, Newcomb M, Friesner R A, Lippard S J. Chem. Rev. [J], 2003, 103(6) : 2 385-2 419

二级参考文献51

  • 1Halldorsson A, Kristisson B, Glynn C, Haraldsson G G.J. Am. Oil Chem. Soc. [J] ,2003, 80(9) : 915 -921
  • 2Bisht K S, Svirkin Y Y, Henderson L A, Gross R A, et al. Micromolecules [J], 1997, 30:7 735 -7 742
  • 3Bisht K S , Henderson L A, Gross R A, Kaplan D L, et al. Macromolecules [J], 1997, 30:2 705 -2711
  • 4Zaks A, Klibanov A M. Science [J].1984, 224 (15):1 294- 1 251
  • 5Yokozeki K. Eur L. Appl. Microb. Biotechnol.[J].1982, 14:1 -5
  • 6Tanaka T. Agric. Biol. Chem. [J] , 1981,45:2 387 -2 389
  • 7Erbeldinger M, Ni X, Halling P J. Enzyme Microb.Technol. [J] , 1998, 23:141-148
  • 8Lopez-Frandino R, Gill I, Vulfson E N. Biotechnol.Bioeng. [J], 1994, 43:1 016-1 023
  • 9Erbeldinger M, Ni X W, Halling P J. Enzyme Microb.Technol. [J], 1993, 13:141-148
  • 10Lopez-Fandino R, Gill I, Vulfson E N . Biotechnol.Bioeng. [J], 1994, 43 (11) : 1 016 -1 023

共引文献19

同被引文献130

引证文献7

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部