期刊文献+

三维空间中二组元有限扩散凝聚集团的标度性质

Scaling Behaviour of the Two-component DLA Cluster in Three Dimensions
下载PDF
导出
摘要 在三维空间中,采用连续行走的蒙特卡罗方法,模拟了两种不同尺寸的粒子的有限扩散凝聚(DLA)行为。研究了二组元DLA集团的分维和多重分形谱,结果表明:在三维空间中,随着大粒子浓度c的上升,二组元DLA集团的分维D_q和多重分形谱的谱宽Δα=α_(max)-α_(min)先达到一个最大值,然后随着浓度的继续增加而下降,最后趋近一组元DLA的分维和谱宽。 In three dimensions, the two-component DLA cluster is simulated by off-lattice Monte Carlo method. The fractal dimension and multifractal spectrum are calculated. The results show that with the rising of the concentration of large particles, the fractal dimension and the width of multifractal spectrum △α=αmax-αmin rain achieves first a maximum value, then decreases along with the density continuously increases, and finally approaches fractal dimension and the width of multifractal spectrum of one-component DLA.
出处 《武汉科技学院学报》 2008年第5期13-16,共4页 Journal of Wuhan Institute of Science and Technology
关键词 连续行走的蒙特卡罗方法 二组元DLA集团 分维 多重分形谱 off-lattice Monte Carlo method the two-component DLA cluster fractal dimension multifractal spectrum
  • 相关文献

参考文献14

  • 1T. A. Witten, L. M. Sander. ,Phys. Rev. Lett[J]. 47,1400,1981.
  • 2T. A. Witten, L. M. Sander. phys. Rev. B[J]. 27, 5686, 1983.
  • 3T. Vicsek. fractal Growth phenomena[Z].World Scientic, Singapore, 1989.
  • 4E Meakin. Phys. Rev. A[J].27, 1495,1983; 27,604,1983; 27,2616,1983.
  • 5A. Erzan, L.Pietronero, A. Vespignani. Rev. Mod. Phys. [J].67,545,1995.
  • 6D. A. Kessler, Z. Olami, J. Oz, I. Procaccia, et al.. Phys. Rev. E [J].57,6913,1998.
  • 7B. Derrida, V. hakim, J. Vannimenus, Phys. Rev. A[J]. 43, 888(1991).
  • 8H. honjo, S. Ohta. Phys. Rev. E[J].57, 6202,1998.
  • 9E Ossadnik, C. H. Lain, L. M. Sander. Phys. Rev. E[J].49, R1788,1994.
  • 10Z. J. Tan, X. W. Zou, W. B. Zhang, et al.. Phys. Rev. E[J].60, 6202,1999.

二级参考文献9

  • 1T.A. Witten , L. M. Sander. Diffusion-limited Aggregation, a Kinetic Critical Phenomenon[J]. Physical Review Letters, 1981,47(19):1400-1403.
  • 2T. A. Witten, L. M. Sander. Diffusion-limited Aggregation[J]. Physical Review B., 1983,27:5686.
  • 3T. Nagatani, E Sagues. Morphological Changes in Convection-diffusion-limited Deposition[J]. Physical Review A., 1991,43:2970.
  • 4A. Kuhn, E Argoul, J. F. Muzy and etal. Structural Analysis of Electroless Deposits in the Diffusion-limited Regime[J]. Physical Review Letters, 1994,73:2998.
  • 5B.A. Daniel, et al. Diffusion-limited One-species Reactions in the Bethe Lattice[J]. J. Phys.:Condens. Matter, 2007,17:065107.
  • 6P. Ossadnik, C. H. Lam, L. M. Sander. Nonuniversal Diffusion-limited Aggregation and Exact Fractal Dimensions[J]. Physical Review E., 1994,49:R1788.
  • 7Z.J. Tan, X. W. Zou, W. B. Zhang , etal.. Influence of Particle Size on Diffusion-limited Aggregation[J]. Physical Review E., 1999,60:6202.
  • 8J. P. Tian , K. L. Yao. Viscous Fingering in Correlated Site-bond Square Lattice[J]. Chinese Physical Letters,2001,18:544.
  • 9T.C. Halsey, M. H. Jensen, L. P. Kadanoff, etal. Fractal Measure and Ttheir Singularities: The characterization of strange sets[J]. Physical. Review A., 1986,33:1141.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部