摘要
在三维空间中,采用连续行走的蒙特卡罗方法,模拟了两种不同尺寸的粒子的有限扩散凝聚(DLA)行为。研究了二组元DLA集团的分维和多重分形谱,结果表明:在三维空间中,随着大粒子浓度c的上升,二组元DLA集团的分维D_q和多重分形谱的谱宽Δα=α_(max)-α_(min)先达到一个最大值,然后随着浓度的继续增加而下降,最后趋近一组元DLA的分维和谱宽。
In three dimensions, the two-component DLA cluster is simulated by off-lattice Monte Carlo method. The fractal dimension and multifractal spectrum are calculated. The results show that with the rising of the concentration of large particles, the fractal dimension and the width of multifractal spectrum △α=αmax-αmin rain achieves first a maximum value, then decreases along with the density continuously increases, and finally approaches fractal dimension and the width of multifractal spectrum of one-component DLA.
出处
《武汉科技学院学报》
2008年第5期13-16,共4页
Journal of Wuhan Institute of Science and Technology
关键词
连续行走的蒙特卡罗方法
二组元DLA集团
分维
多重分形谱
off-lattice Monte Carlo method
the two-component DLA cluster
fractal dimension
multifractal spectrum