期刊文献+

Cathodoluminescent and electrical properties of an individual ZnO nanowire with oxygen vacancies

Cathodoluminescent and electrical properties of an individual ZnO nanowire with oxygen vacancies
下载PDF
导出
摘要 A single ZnO nanowire with intrinsic oxygen vacancies is utilized to fabricate four-contact device with focus ion beam lithography technique. Cathodoluminescent spectra indicate strong near-UV and green emission at both room temperature and low temperatures. Experimental measurement shows the temperature-dependent conductivity of the ZnO nanowire at low temperatures (below 100 K). The further theoretical analysis confirms that weak localization plays an important role in the electrical transport, which is attributed to the surface states induced by plenty of oxygen vacancies in ZnO nanowire. A single ZnO nanowire with intrinsic oxygen vacancies is utilized to fabricate four-contact device with focus ion beam lithography technique. Cathodoluminescent spectra indicate strong near-UV and green emission at both room temperature and low temperatures. Experimental measurement shows the temperature-dependent conductivity of the ZnO nanowire at low temperatures (below 100 K). The further theoretical analysis confirms that weak localization plays an important role in the electrical transport, which is attributed to the surface states induced by plenty of oxygen vacancies in ZnO nanowire.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第9期3444-3447,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos 60771037 and 90406022) the National High Technology Research and Development Program of China (Grant No 2008AA03Z309) the National Key Basic Research Program of China (Grant Nos 2007CB936802 and 2007CB935503)
关键词 ZnO nanowire electrical transport oxygen vacancies weak localization ZnO nanowire, electrical transport, oxygen vacancies, weak localization
  • 相关文献

参考文献40

  • 1Wang X D, Song J H, Liu J and Wang Z L 2007 Science 316 102
  • 2Liao L, Liu K H, Wang W L, Bai X D, Wang E G, Liu Y L, Li J Cand Liu C2007 J. Am. Chem. Soc. 129 9563
  • 3Gao H J, Sohlberg K, Xue Z Q, Chen H Y, Hou S M, Ma L P, Fang X W, Pang S J and Pennycook S J 2000 Phys. Rev. Lett. 84 1780
  • 4Ma L P, Song Y L, Gao H J, Zhao W B, Chen H Y, Xue Z Q and Pang S J 1996 Appl. Phys. Lett. 69 3752
  • 5Gao H J, Xue Z Q, Wang K Z, Wu Q D and Pang S J 1996 Appl. Phys. Lett. 68 2192
  • 6Feng M, Gao L, Deng Z T, Ji W, Guo X F, Du S X, Shi D X, Zhang D Q, Zhu D B and Gao H J 2007 J. Am. Chem. Soc. 129 2204
  • 7He S, Yao J, Jiang P, Shi D X, Zhang H, Xie S S, Pang S J and Gao H J 2001 Langmuir 17 1751
  • 8Wang X J, Tian J F, Yang T Z, Bao L H, Hui C, Liu F, Shen C M, Gu C Z, Xu N S and Gao H J 2007 Adv. Mater. 19 4480
  • 9Liu F, Tian J F, Bao L H, Yang T Z, Shen C M, Xu N S and Gao H J 2008 Adv. Mater. 9999 1
  • 10Shi D X, Ji W, Lin X, He X B, Lian J C, Gao L, Cai J M, Lin H, Du S X, Lin F, Seidel C, Chi L F, Hofer W A, Fuchs H and Gao H J 2006 Phys. Rev. Lett. 96 226101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部