期刊文献+

一种基于概念格的本体合并方法 被引量:1

A Method for Ontology Merging Based on the Concept Lattice
下载PDF
导出
摘要 提出了一种基于概念格的,并利用叙词表的方法进行本体合并.为了进一步获得提取本体概念的相关指导,提高本体概念抽取的自动化程度,提出最小外延集概念,从而更方便有效地进行本体合并. This paper advanced a method using thesaurus for ontology merging based on the concept lattice model.In order to extract the ontology concepts more conveniently and automatically,the notion SLET is advanced,thereby we can carry out ontology merging effectively.
出处 《微电子学与计算机》 CSCD 北大核心 2008年第9期34-36,共3页 Microelectronics & Computer
基金 国家自然科学基金(60575035 60673060)
关键词 本体合并 概念格 叙词表 最小外延集 ontology merging concept lattice thesaurus SLET
  • 相关文献

参考文献8

  • 1Chalupsky H. OntoMorph: a translation system for symbolic knowledge[ C]//Proc. KR 00. USA, Breckenridge, 2000 : 471 - 482.
  • 2Me Guinness D L, Fikes R, Rice J, et al. An environment for merging and testing large ontologies[C]//Proe. KR' 00. USA, 2000 : 483 - 493.
  • 3Fridman No Y N, Musen M A. Algorithm and tool for automated ontology merging and alignment [ C ]// Proc. AAAI'00. Austin, Texas: MIT Press, 2000:450- 455.
  • 4Ganter B, Wille R. Formal concept analysis: mathematical foundationsl M]. Heidelberg: Springer, 1999.
  • 5Gruber T R. A translation approach to portable ontology specifications[J]. Knowledge Acquisition, 1993,5(2): 199 - 221.
  • 6Souza de, K X S, Davis J. Aligning ontologies through formal concept analysis[C]//Journal on Data Semantics V, LNCS 3870. Australia, 2006:211 - 236.
  • 7李云,刘宗田,陈崚,蔡俊杰.量化规则格及其渐进式构造[J].模式识别与人工智能,2006,19(3):375-381. 被引量:2
  • 8Maedche A, Staab S. Measuring similarity between ontologies[ C ]// Proceedings of the European Conference on Knowledge Acquisition and Management (EKAW). Heidelberg: Springer, 2002:251 - 163.

二级参考文献14

  • 1Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of hems in Large Databases. In: Proc of the ACM SIGMOD Conference on Management of Data. Washington, USA, 1993, 207-216
  • 2Han J W, Kamber M. Data Mining: Concepts and Techniques. Orlando, LISA, Morgan Kaufmann Publisher, 2000
  • 3Li Y, I.iu Z T, et al. Extracting Minimal Non Redundant Implication Rules by Using Quantized Closed Itemset Lattice. In; Proc of the 16th International Conference on Software Engineer ing and Knowledge Engineering. Banff, Canada, 2004, 402-405
  • 4Li Y, Liu Z T, et al. Extracting Minimal Non Redundant Approximate Rules Based on Quantitative Closed Itemset Lattice. Journal of Fudan University (Natural Science), 2004, 43(5) 801-804
  • 5Bastide Y, Pasquier N, et al, Mining Minimal Non-Redundant Assnciation Rules Using Frequent Closed Itemsets, In: Proc of the 1st International Conference on Computational Logic. London, UK, 2000: 972-986
  • 6Ganter B, Wille R. Formal Concept Analysis: Mathematical Foundations. Berlin, Germany: Springer-Verlag, 1999
  • 7Waiyamai K, l.akhal L. Knowledge Discovery from Very Large Databases Using Frequent Concept Lattices. In: Proe of the llth European Conferenee on Machine Learning. Barcelona. Spain, 2000, 437-445
  • 8Pasquier N, Bastide Y, et al. Efficient Mining of Association Rules Using Closed hemset Lattices. Information Systems, 1999, 24(1): 25-46
  • 9Zaki M J, Hsiao C J. Charm: An Efficient Algorithm for Closed Association Rule Mining. Technical Report, 99-10, Rensselaer Polytechnic Institute, 1999
  • 10Vallchev P, Missaoui R, Godin R, Meridji M. Generating Frequent Itemsets Incrementally: Two Novel Approaches Based on Galois Lattice Theory. Journal of Experimental and Theoretical Artificial Intelligence, 2002, 14(2-3): 115 -142

共引文献1

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部