期刊文献+

广义逆A_(T,S)^((2))的子阵表示及其计算 被引量:2

A Representation and Computation of Generalized Inverse A_(T,S)^((2)) of a Matrix Based on Its Submatrices
下载PDF
导出
摘要 利用郑兵和R.B.Bapat建立的矩阵外逆阶的一个特征,给出直接运用矩阵的子阵表示和计算矩阵广义逆A(2)T,S的一种新方法. The out inverse of a matrix can be got by using R. B. Bapat. According to this decomposition, a simple algorithm for computing the generalized inverses A T,S^(2) is presented by directly using its submatrices.
作者 张国万
出处 《兰州工业高等专科学校学报》 2008年第3期1-3,共3页 Journal of Lanzhou Higher Polytechnical College
关键词 广义逆AT S^(2)熟 外逆 满秩分解 子矩阵 generalized inverses A T,S^(2) out inverse full- rank decomposition submatrix
  • 相关文献

参考文献8

  • 1G.Wang,Y.Wei and S.Qiao. Generalized Inverses:Theory and Computations[M]. Sci. Press, Beijing/New York, 2004.
  • 2A.Ben - Israel,T.N.E.GreviUe. Generalized Inverses: Theory and Applications[M]. 2nd ed.,Springer - Verlag Press, New York,2003.
  • 3B.Zheng, R.B. Bapat. Characterization of Generalized Inverses by a Rank Equation[J]. App. Math. Comput. 2004(151):53 - 67.
  • 4B.Zheng, R.B.Bapat. Generalized Inverses AT.S^(2)and a Rank Equation[J]. App. Math. Comput.2004(155): 407 - 415.
  • 5Y.Wei. A Characterization and Representation of the Generalized Inverse AT.S^(2)and Its Application[J]. Linear Algebra Appl.1998(280) :87 - 96.
  • 6Y. Wei, H. Wu. The Representation and Approximation for the Generalized Inverse AT.S^(2)[J].Apph Math.Comput. 2003(135) :263 - 276.
  • 7X.Sheng, G..Chen. Full - rank Representation of Generalized Inverse and its Application[J]. Appl. Math. Comput. 2007(54) :1422 - 1430.
  • 8P.Stanimirovie, S.Bogdanovie and M.Cirie. Adjoint Mappings and Inverses of Matrices[J]. Algebra Colloquium (AC) 2006(13):421 - 432.

同被引文献21

  • 1陈永林.计算广义逆A^(2)_(T,S)的基于函数插值的一族迭代法[J].南京师大学报(自然科学版),2005,28(2):6-13. 被引量:2
  • 2虞志坚.有关Hilbert空间上的投影[J].台州学院学报,2005,27(3):18-20. 被引量:2
  • 3朱超,曹丽琼,陈果良.几类广义逆矩阵的若干性质[J].华东师范大学学报(自然科学版),2006(3):26-31. 被引量:7
  • 4郑兵,钟承奎.Hilbert空间上线性算子广义逆A_(T,S)^((2))的存在性及其表示式[J].数学物理学报(A辑),2007,27(2):288-295. 被引量:8
  • 5Y. Wei, D. S. Djordjevie. On integal representation of the generalized inverse AT.5^(2) Appl. Math. Comput. ,2003,14(2) : 189-194.
  • 6D. S. Djordjevic, P. S. Stamimirovic. Splitting for operators and generalized inverses[J]. Publicationes Mathematicae, Debrecen,2001(59) : 147-159.
  • 7D. S. Djordjevic, P. S. Stamimirovic. On the generalized drazin inverse and generalized resolvent [J]. Czechoslovak Mathematical Journal, 2001,51 (126) : 617-634.
  • 8B. Zheng, R. B. Bapat. Generalized inverses AT.S^(2) and a rank equation, App. Math. Comput. 2004(155):407-415.
  • 9Y. Wei, A characterization and representation of the generalized inverse AT.S^(2) AT.s and its application[J]. Linear Algebra Appl. , 1998(280): 87-96.
  • 10Y. Wei, H. Wu, The representation and approximation for the generalized inverse AT.S^(2), Appl. Math [J]. Comput. 2003(135) :263-276.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部