期刊文献+

基于LVQ网络算法的目标分类方法

The Target Differentiation Method Based on LVQ Neural Network
下载PDF
导出
摘要 随着机器人技术的不断发展,构建未知空间的环境地图以成为移动机器人技术中具有挑战性的研究课题。自主环境建模体现了机器人的感知能力和智能水平,在实际应用中具有十分重要的意义。文章研究了学习矢量量化算法在智能机器人对环境障碍物识别中的应用以及噪声、振幅、声纳TOF数据的偏移、距离以及目标体(锐角和边角)的角度等因素对系统分类性能的影响。实验表明,该方法对上述各种影响因素具备一定的鲁棒性,从而使得移动机器人能够在较大的距离范围内快速、可靠地识别室内各种典型障碍物。 With the development of science and technology,mapping-especially the target differentiation in unknown environments for mobile robots is a challenging subject in robotics. Mapping is embodies the perceive ability and the intelligent level of mobile robots. Thus,it is also play an important role in practical applications. In this paper,the robustness of the system to noise, partial removal of amplitude and TOF data and distance and different targets (edge with different,acute corner with different)has been studied. The experiment results show that the LVQ neural network has a high robustness to noise, and can differentiate the typical targets in a large ranging scope effectively and rapidly.
出处 《机电一体化》 2008年第8期70-71,82,共3页 Mechatronics
关键词 LVQ算法 目标识别 分类 神经网络 LVQ algorithm target differentiation different classification neural network
  • 相关文献

参考文献6

  • 1苏丽颖,谭民.移动机器人构建地图的研究与发展[J].中国科学院研究生院学报,2002,19(2):157-162. 被引量:12
  • 2BARSHAN B,AYRULU B,UTET ESW. Target identification with multiple logical sonars using evidential reasoning and simple majority voting [J]. IEEE International Conference on Robotics and Automation, 1997 (3) : 20-25.
  • 3BARSHAN B,KUC R. Differentiating Sonar Reflections from Corners and Planes by Employing an Intelligent Sensor [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 (6) :560-569.
  • 4BARSHAN B,AYRULU B,UTETE SW,Neural network-based target differentiation using sonar for robotics application [J]. IEEE Transactions on Robotics and Automation ,2000,16(4) :435-442.
  • 5AYRULU B, BARSHAN B. Comparative analysis of different approaches to target classification and localization with sonar [C]. International Conference on Multi-sensor Fusion and Integration for Intelligent Systems (MFI 2001 ), 2001.
  • 6KOHONEN T. The self-organizing map[J ]. Proceedings of the IEEE, 1990,78(9) : 1464-1480.

二级参考文献24

  • 1[1]Y Uny Cao, Alex S, Fukunaga, et al. Cooperative Mobile Robotics: Antecedents and Directions Autonomous Robots. 1997, (4): 7~27
  • 2[2]Clark F, Olson. Probabilistic Self-Localization for Mobile Robots. IEEE Transactions on Robotics and Automation, 2000, 16(1): 55~66
  • 3[3]Brian Yamauchi. Frontier-Based Exploration Using Multiple Robots. In: Proceedings of the Second International Conference on Autonomous Agents(Agents'98), Minneapolis, MN, 1998. 47~53
  • 4[4]S. Thrun, M Beetz, et al. Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva. The International Journal of Robotics Research, 2000, 19(11): 972~999
  • 5[5]Masahiro Tomono, Shin' ichi Yuta. A Framework for Indoor Navagation based on a Partially Quantitative Map. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Japan, 2000, 1: 626~632
  • 6[6]J Borenstein, H R Everett, L Feng, et al. Mobile Robot Positioning: Sensors and Techniques. Journal of Robotic Systems, 1997, 14: 231~249
  • 7[7]Louis Drolet, Francois Michaud, Jean Cté. A daptable Sensor Fusion Using Multiple Kalman Filters. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Japan, 2000, 1: 1434~1439
  • 8[8]J J Leonard, H F Durrant-Whyte. Mobile Robot Localization by Tracking Geometric Beacons. IEEE transactions on Robotics and Automation, 1991, 7: 376~382
  • 9[9]M Betke, L Gurvits. Mobile Robot Localization Using Landmarks. IEEE Transactions on Robotics and Automation, 1997, 13: 251~163
  • 10[10]Gordon Kao, Penny Probert. Feature Extraction from a Broadband Sonar Sensor for Mapping Structured Environments Efficiently. The International Journal of Robotics and Research. 2000, 10: 895~913

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部