摘要
时域有限差分(FDTD)法作为一种数值计算方法,在对电磁问题分析时存在不可避免的问题。着重分析了不同网格长度对FDTD分析电磁问题结果的影响,简明扼要地阐述了FDTD数值稳定性条件和数值色散问题中的空间步长和时间步长的关系,通过实验说明在FDTD计算中确定网格长度的依据,即网格长度应满足一定的条件Δ<λ/10,同时还要考虑到时间步长Δt的取值来保证FDTD计算的稳定性。
As a numerical algorithm, finite-difference time-domain method (FDTD) used to analyze the electromagnetic problems can cause some inevitable errors. This paper mainly analyzes the effects of using FDTD to analyze the electronagnetic problems with different grid lengths. Then, it briefly illustrates the numerical stability conditions of FDTD and the relationship belween the space step and the time- step in the numerical dispersion problem. According to the experience, the basis for determining the grid length in FDTD calculation is that the grid length must satisfy the relation:△ 〈λ2/10. Meanwhile, the value of the time-step △t should be taken into account to ensure the stability of FDTD.
出处
《山东科技大学学报(自然科学版)》
CAS
2008年第4期48-52,共5页
Journal of Shandong University of Science and Technology(Natural Science)
基金
黑龙江省博士后基金项目(LRB06-102)
哈尔滨市科技创新人才研究专项资金项目(2007RFQXG026)
哈尔滨工程大学基础研究基金项目(HEUFT06024)