期刊文献+

一类三种群食物链扩散模型的稳定性

Stability of a Diffusive Model for a Three Species Food Chain
下载PDF
导出
摘要 分析了一类由一个食饵种群、一个低级捕食者种群和一个高级捕食者种群组成的三种群食物链扩散模型。利用极值原理和Young不等式得出了解在齐次Neumann边界条件下存在唯一性和一致有界性,并用线性化方法和Lyapunov函数方法讨论了该模型正平衡点的稳定性,分别得到了该模型正平衡点的局部和全局渐近稳定性定理。 In this paper, a three species food chain model consisting of a prey species, a low-level predator speciesand high-level predator species is analyzed. The uniqueness of global existence and uniform boundedness of positive solutions to a three species food chain system with diffusion are proved under homogeneous Neumann boundary condition by peak principle and Young inequality. The stability of positive equilibrium point to the model is discussed, and the local asymptotieal stability and global asymptotical stability are given by linearization method and Lyapunov function respectively.
出处 《山东科技大学学报(自然科学版)》 CAS 2008年第4期82-85,共4页 Journal of Shandong University of Science and Technology(Natural Science)
基金 甘肃省教育厅科研项目(0704-14)
关键词 食物链 平衡点 反应扩散 局部渐近稳定性 全局渐近稳定性 food chain equilibrium point reaction diffusion locally asymptotical stability globally asymptotical stability
  • 相关文献

参考文献11

  • 1程惠东,孟新柱,张伟伟.具有Beddington-Deangelis类功能反应的时滞食物链系统全局吸引性研究[J].山东科技大学学报(自然科学版),2007,26(3):102-105. 被引量:6
  • 2谭德君.基于比率的三种群捕食系统的持续生存[J].生物数学学报,2003,18(1):50-56. 被引量:24
  • 3ZHANG S,CHEN L. Chaos in three species food chain system with impulsive perturbations[J]. Chaos,Solitons and Fractals, 2005,24 : 73-83.
  • 4LIN Z, PEDERSEN M. Stability in a diffusive food-chain model with Michaelis-Menten functional response[J]. Nonlinear Analysis, 2004,57 : 421-433.
  • 5PANG P , WANG M . Strategy and stationary pattern in a three-species predator-prey model[J]. Journal of Differential Equations, 2004,200: 245-273.
  • 6GAN W, LIN Z. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model[J] Journal of Mathematical Analysis and Applications,2008,337 : 1089-1099.
  • 7BRAUER F, SOUDACK A C. Coexistence properties of some predator-prey systems under constant rate harvesting and stocking[J]. Journal of Mathematical Biology, 1981,12 : 101-114.
  • 8BRAUER F,SOUDACK A C. Constant rate stocking of predator-prey systems[J]. Journal of Mathematical Biology, 1981, 11 :1-14.
  • 9PAO C V. Nonlinear parabolic and elliptic equations[M]. New York:Prenum Press, 1992.
  • 10HENRY D. Geometric theory of semilinear parabolic equations[M]//Lecture Notes in Mathematics, New York:Springer, 1993:840.

二级参考文献2

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部