期刊文献+

变像管相机中空间电荷效应的统计动力学分析 被引量:2

Statistical-dynamic analysis of space-charge effects in streak cameras
下载PDF
导出
摘要 从Boltzmann积分微分方程出发推出了保守势场中电子数密度按势能的分布规律,即Boltz-mann统计分布。以此为基础,从统计动力学的角度详细分析了变像管相机中超短电子脉冲内部的空间电荷效应,通过求解Poisson方程得出了表征空间电荷效应的两个特征参量:空间电荷密度分布函数和速度分布函数,并对其按电位的动态变化规律进行了定性讨论。结果表明,限制变像管中的低电位区域和其中光电子脉冲从高电位向低电位传输的区域都将有助于优化整个变像管的性能。同时也重新讨论了光电阴极附近强加速场对光电子脉冲时间弥散的抑制作用,最终确定了其物理机制为不等位区间中电子脉冲空间分布的高度集中性。 Based on Boltzmann distribution law which is the derived distribution characteristic of electrons by potential energy in a conservative field from Boltzmann integrally differential equation in equilibrium state, the distribution functions of volume charge density and the velocity of electron pulse system in the externally supported unequal-potential space are achieved from the perspective of statistical physics by solving Poisson's equation. And the qualitative analysis of the dynamic variation characteris- tics of the two parametric distributions indicates that a higher external potential will restrain the unwelcome space charge effects which cause electron pulse broadening and energy spread. The physical mechanism of the optimization effect of higher electric field in the vicinity of the photocathode on the temporal resolution is proved to be the enhanced concentration of electrons in a streak camera, and it is not the well-recognized reduction of photoelectron energy spread. What's more, an inferential conclusion is also available that limiting the extent of the regions where the photoelectron pulse moves along the electric field will greatly improve the functional performance of streak cameras.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2008年第8期1387-1391,共5页 High Power Laser and Particle Beams
基金 中国科学院西安光学精密机械研究所瞬态光学技术国家重点实验室基金资助课题(YAK200601)
关键词 高速变像管相机 空间电荷效应 Boltzmann积分微分方程 POISSON方程 时间分辨 High-speed image-converter camera Space charge effects Boltzmann integrally differential equation Poisson's equation Time-resolved
  • 相关文献

参考文献9

  • 1Linden B R, Snell P A. Shutter image converter tubes[C]//Proc of IRE. 1957, 45(3)1513-523.
  • 2Chang T H P, Kern D P, Muray L P. Microminiaturization of electron optical system[J]. J Vac Sci Technol B, 1990, 8(6):1698-1704.
  • 3Niu H, Sibbett W. Theoretical analysis of space-charge effects in photochron streak cameras[J]. Rev Sci Instrum, 1981, 52(12):1830- 1836.
  • 4Qian B L, Elsayed-Alil H E. A new compensating element for a femtosecond photoelectron gun[J]. Rev Sci Instrum, 2001, 72 (9): 3507- 3513.
  • 5Qian B L, Elsayed-Alil H E. Acceleration element for femtosecond electron pulse compression[J]. Phys Rev E, 2002, 65:046502.
  • 6Klevin M W. Image converters and image intensifier for military and scientific use[C]//Proc of IRE. 1959, 11(5):904-909.
  • 7Bradley D J, Bryant S F, Sibbett W. Intensity dependent time resolution and dynamic range of photochron picosecond streak cameras[J]. Appl Phys Lett, 1980, 51(8) :824-831.
  • 8薛增泉.热力学与统计物理[M].北京:北京大学出版社,1995:202-214.
  • 9Alfrey G F. Physical electronics[M]. London: Van D Nostrand Company LTD, 1964:62-73.

共引文献2

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部