期刊文献+

一种带有竞争机制的混合蚁群算法

Multi-behavior ant colony system based on competitive rules
下载PDF
导出
摘要 针对基本蚁群算法(AS)存在的不足,提出了一种同时包含竞争机制和多种寻优规则的混合蚁群算法(MCAS)。通过对TSP问题的仿真实验,表明MCAS算法选用适当的参数组合后,可以在不增加算法复杂度的前提下表现出比AS算法更佳的全局求解能力和鲁棒性。 In order to improve the performance of Ant System(AS),an improved ant system called Multiple Competitive Ant Sys-tem(MCAS) is proposed.Simulation based on TSP shows that MCAS is better than AS on both finding better path and robustness if the proper parameters are setup.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第26期18-20,33,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.70521001~~
关键词 蚁群算法 蚁群系统 旅行商问题 ant colony algorithm ant colony system Traveling Salesman Problem(TSP)
  • 相关文献

参考文献7

  • 1Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man, and Cybernetics:Part B, 1996,.26( 1 ) :29-41.
  • 2Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) :53-66.
  • 3Stutzle T,Hoos H H.MAX-MIN ant system[J].Future Generation Computer Systems,2000,16(8) :889-914.
  • 4Bullnheimer B,Hartl R F,Strauss C.A new rank-based version of the ant system:A cornputational study[J].Central European Journal for Operations Research and Economics, 1999,7(1 ):25-38.
  • 5王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 6吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 7叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:155

二级参考文献9

  • 1Colorini A , Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies.1st European Conf. Artificial Life, Pans., Elsevier, France, 1991
  • 2Colorini A, Dorigo M, Maniezzo V. 1991 Positive Feedback as a Search Strategy. Technical Report 91-016, Politecnico di Milano,1991
  • 3Dorigo M, Maniezzo Vittorio, Colorni Alberto. The Ant System: Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B,1996, 26(1): 1-13.
  • 4Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 5Schoonderwoerd R, Holland O, Bruten J, Rothkrantz L. Ant-based Load Balancing in Telecommunications Networks [J]. Adaptive Behavior, 1997, 5(2): 169-207.
  • 6Daniel Costa,Alain Hertz,Clivier Dubuis. Embedding a sequential procedure within an evolutionary algorithm for coloring problems in graphs[J] 1995,Journal of Heuristics(1):105~128
  • 7郑肇葆.协同模型与遗传算法的集成[J].武汉大学学报(信息科学版),2001,26(5):381-386. 被引量:8
  • 8温文波,杜维.蚁群算法概述[J].石油化工自动化,2002,38(1):19-22. 被引量:55
  • 9虞安波,杨家本.TSP问题的自适应进化算法[J].计算技术与自动化,2002,21(1):19-22. 被引量:3

共引文献651

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部