期刊文献+

支持向量机惩罚参数的自适应调整方法 被引量:7

Adaptive adjust method for penalization parameter of support vector machines
下载PDF
导出
摘要 训练样本集中异常样本的存在会使得支持向量机分类超平面过度复杂,降低了分类器的分类效率和泛化性能,在分析这种问题产生原因的基础之上,提出了一种支持向量机惩罚参数的自适应调整方法。实验证明,该方法简单易行且具有更好的抗干扰能力及更高的推广性能,在工程实际中有着较好的应用前景。 The extreme sample in training sample set usually make the separation hyper-surface of support vector machines unnecessarily over-convoluted,thus affecting both the classification efficiency and the generalization ability of classifier.After analyzing the reason for this problem,an adaptive adjust method for penalization parameter of support vector machines is proposed.The experimental result shows that this method not only is simple and feasible but also has better anti-jamming ability and higher generalization ability.And it will have a better application foreground in practical work.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第26期45-47,共3页 Computer Engineering and Applications
关键词 支持向量机 故障诊断 分类效率 support vector machines fault diagnosis classify efficiency
  • 相关文献

参考文献7

二级参考文献42

  • 1Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28.
  • 2Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467.
  • 3Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999.
  • 4Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999.
  • 5Klaus-Robert Mailer, Sebastian Mika, Gunnar Raetsch, Koji Tsuda, and Bernhard Schoelkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12 (2): 181-201.
  • 6Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 7Paya B A, Esat I I, Badi M N M. Artificial neural network based fault diagnosis of rotating machinery using wavelet transforms as processor. Mechanical Systems and Signal Processing, 1997, 11(5): 751-765.
  • 8Dellomo M R. Helicopter gearbox fault detection: a neural network based approach. Journal of Vibration and Acoustics, 1999, 121(3): 265-272.
  • 9Vapnik V N. The nature of statistical learning theory. NewYork: Spring-Verag, 1995.
  • 10Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proc. R. Soc.Lond. A, 1998(454): 903-995.

共引文献371

同被引文献86

引证文献7

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部