期刊文献+

一类基于非均匀剖分的二维高精度差分格式

A kind of two-dimensional high-order accurate difference schemes based on non-uniformly partition
下载PDF
导出
摘要 利用dimension-by-dimension方法,将求解一维非线性双曲型守恒律的一类基于非等距单元平均值重构的高效差分格式推广到二维标量双曲型守恒律方程,得到求解二维双曲型守恒律的一类二维高精度差分格式。证明了该类格式的无振荡特性。然后,将格式推广到二维双曲型守恒方程组情形。最后,给出了几个标准数值算例,验证了格式具有高阶精度、高效捕获激波等间断的能力。 Extending a class of high resolution difference schemes based on non - uniformly cell averaged - solution reconstruction for one dimensional nonlinear hyperbolic conservation laws to two - dimensional scalar hyperbolic conservation laws, a kind of two dimensional high - order accurate difference schemes is obtained by using dimension - by - dimension method for two - dimensional nonlinear hyperbolic conservation laws in this paper. Moreover, the non - oscillatory property of these schemes is proved. The extension to systems is carried out. Finally, several typical numerical experiments are given. The numerical results show that these schemes have high - order accuracy and high resolution for capturing shock waves.
机构地区 南昌航空大学
出处 《南昌航空大学学报(自然科学版)》 CAS 2008年第2期1-4,17,共5页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 江西省自然科学基金项目(0611096) 南昌航空大学博士启动项目(EA200607031)
关键词 双曲型守恒律 高阶精度 差分格式 欧拉方程组 hyperbolic conservation laws high - order accuracy difference scheme Euler equations
  • 相关文献

参考文献8

  • 1[1]Harten A.High resolution schemes for hyperbolic conservation laws[J].J.comput.Phys.,1983,49:357-393.
  • 2[2]Goodman J B,LeVeque R J.0n the accuracy of stable schemes for 2D scalar coservation laws[J].Math.Comput.,1985,45:15-21.
  • 3[3]Wu H M,Yang S L.MmB-a new class of accurate high resolution schemes for conservation laws in two dimensions[C].Ver々ffentlichtmgen des Konrad-Zuse-Zentrum für lnformationstechnik Bedin Technical Reports.Preprint SC89-6,August 1989.
  • 4[4]Jiang G s,Levy D,Lin C T,et a1.Higll resolution nonoecillatory central schemes with nonstaggered grids for hyperbolic conser-vation laws[J].SIAM J.Numer.Anal.,1998,35(6):2147-2168.
  • 5[6]Liu x D,Osher S.Convex ENO high order multidimensional schemes without field by field decomposition or staggered grids[J].J.Comput.Phys..1998,142:304-330.
  • 6[7]lax P D.Liu x D.Solution of two-dimensional Biemann problems of gas dynamics by positive schemes[J].SIAM J.Sci.Comput.,1998,19(2):319-340.
  • 7[8]Yee H c.Warming R F,Harten A.Implicit Total Variation Diminishing TVD schemes for Steady-state Calculations[J].J.Comput.Phys..1985,57:327-360.
  • 8[9]Colella P.Multidimensional upwind methods for hyperbolic conservation laws[J].J.Comput.Phys.,1990,87:171-200.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部