期刊文献+

复杂平面区域的三角网格生成算法 被引量:4

Triangular Mesh Generation over Arbitrary Two-dimensional Domain
下载PDF
导出
摘要 为生成复杂平面区域的有限元网格,提出了基于网格细化的三角网格生成算法。该算法首先采用耳尖移除法对区域边界做三角划分,得到粗略的初始网格。提出Delaunay优化平分方法,根据网格密度细化初始网格,该网格细化方法结合最长边平分技术与Delaunay边交换技术,可有效提高内点生成与单元细分的质量。实验表明,基于Delaunay优化平分的三角网格生成算法可对任意平面域进行网格剖分,生成符合有限元计算要求的高质量三角网格。 A refinement-based triangular meshing algorithm is proposed to generate fmite element meshes of arbitrary two-dimensional domains. The boundary is triangulated by the ear-removal method, constructing an initial mesh with coarse elements. To meet the pre-specified sizing requirement by refining the initial mesh, a novel mesh refinement method, Ddaunay-optimized bisection, is presented. By combining global-longest-edge bisection with Ddaunay edge swapping, well-shaped triangular elements are eomtmeted. Meshing examples axe presented along with mesh statistics, showing that the presented algorithm is capable of generating quality finite dement meshes for arbitrary 2D domains.
作者 陈欣 熊岳山
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2008年第4期94-97,共4页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60773022) 国家863计划资助项目(2007AA01Z313) 北京市自然科学基金资助项目(4062034)
关键词 三角网格 网格生成 网格细化 Delaunay优化平分 triangular mesh mesh generation mesh refinement delaunay-optimized bisection
  • 相关文献

参考文献9

  • 1Owen S J. A Survey of Unstructured Mesh Generation Technology [ C]//Proc. 7^th International Meshing Roundtable, Michigan, 1998: 239.
  • 2关振群,宋超,顾元宪,隋晓峰.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,15(1):1-14. 被引量:169
  • 3Lawson C L. Software for C1 Surface Interpolation [C]//Mathermatical Software Ⅲ, J. Rice (ed.), Academic Press, New York, 1977 : 161 - 1941
  • 4Vigo M, Pla N. Computing Directional Constrained Delaunay Triangulations [J]. Computers & Graphics, 2000, 24:181 - 190.
  • 5Baker T J. Triangulations, Mesh Generation and Point Placement Strategies [ C ]//Proc. Computing the Future, 1995:61 - 75.
  • 6Shewchuk J R. What Is a Good Linear Element? Interpolation, Conditioning, and Quality Measures [ C]//Proc. 11^th International Meshing Roundtable, New York, 2002: 115- 126.
  • 7Shewchuk J R. Delaunay Refinement Algorithms for Triangular Mesh Generation [J]. Computational Geometry: Theory and Application, 2002, 22: 86 - 95.
  • 8Rivara M C. New Longest-edge Algorithms for the Refinement and/or Improvement of Unstructured Triangulations [ J ]. International Journal for Numerical Methods in Engineering,1997,40:3313-24.
  • 9Lo S H. 3D Mesh Refinement in Compliance with a Specified Node Spacing Function [J]. Computational Mechanics, 1998, 21:11 - 19.

二级参考文献25

共引文献168

同被引文献21

  • 1王永会,吴刚.大量约束边条件下构建约束Delaunay三角网的研究[J].测绘科学,2009,34(S1):117-118. 被引量:5
  • 2周培德.计算几何[M].北京:清华大学出版社,2004.
  • 3Lawson C L.Software for C1 Surface Interpolation[C]//Mathematical Software,Academic Press,New York,1977:161-194.
  • 4Rivara M C.New Longest-edge Algorithms for Triangular Mesh Generation[J].Computational Geometry:Theory and Application,2002,22:86-95.
  • 5Bowyer A.Computing Dirichlet Tessellations[J].The Computer Journal,1981,24(2):151-166.
  • 6Thompson J F,Weathrill N P.An Aspects of Numerical Grid Generation:Current Science and Art[R].AIAA 93-3539,1993.
  • 7张涵信;沈孟育.计算流体力学-差分方法的原理与应用[M]{H}北京:国防工业出版社,2003.
  • 8周培德.计算几何[M]{H}北京:清华大学出版社,2004.
  • 9Lawson C L. Software for C1 surface interpolation[A].{H}New York:Academic Press,1977.161-194.
  • 10Rivara M C. New longest-edge algorithms for triangular mesh generation[J].Computational Geometry:Theory and Application,2002.86-95.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部