摘要
为生成复杂平面区域的有限元网格,提出了基于网格细化的三角网格生成算法。该算法首先采用耳尖移除法对区域边界做三角划分,得到粗略的初始网格。提出Delaunay优化平分方法,根据网格密度细化初始网格,该网格细化方法结合最长边平分技术与Delaunay边交换技术,可有效提高内点生成与单元细分的质量。实验表明,基于Delaunay优化平分的三角网格生成算法可对任意平面域进行网格剖分,生成符合有限元计算要求的高质量三角网格。
A refinement-based triangular meshing algorithm is proposed to generate fmite element meshes of arbitrary two-dimensional domains. The boundary is triangulated by the ear-removal method, constructing an initial mesh with coarse elements. To meet the pre-specified sizing requirement by refining the initial mesh, a novel mesh refinement method, Ddaunay-optimized bisection, is presented. By combining global-longest-edge bisection with Ddaunay edge swapping, well-shaped triangular elements are eomtmeted. Meshing examples axe presented along with mesh statistics, showing that the presented algorithm is capable of generating quality finite dement meshes for arbitrary 2D domains.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2008年第4期94-97,共4页
Journal of National University of Defense Technology
基金
国家自然科学基金资助项目(60773022)
国家863计划资助项目(2007AA01Z313)
北京市自然科学基金资助项目(4062034)