期刊文献+

基于光流的人体运动实时检测方法 被引量:29

Real-Time Detection Method of Human Motion Based on Optical Flow
下载PDF
导出
摘要 针对目前广泛使用的光流法计算耗时严重问题,提出了基于差分图像绝对值和(SAD)与光流法相结合的人体运动检测方法.通过计算SAD检测出运动区域,在已确定的运动区域内进行Horn-Schunck光流场计算,准确地计算出人体的运动信息.在后续处理中,应用形态学的闭运算和连通性分析,较完整地分割出人体运动目标.实验结果表明,该方法有效地提高了系统的计算速度,能够实时准确地对人体运动进行检测. Considering the problem that the traditional optical flow algorithm is a time-consuming computation. An integrated method of detecting human motion is proposed based on the sum of absolute differences (SAD) and optical flow. The motion sub-region is detected by the computation of SAD. The optical flow vectors of the object can be obtained by computing optical flow on the motion sub-region. In the post processing, closing and connected components analysis are used for the segmentation of human object. Experimental results showed the effectiveness and robustness of the proposed method.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2008年第9期794-797,共4页 Transactions of Beijing Institute of Technology
基金 国家部委预研项目(06104040)
关键词 人体运动 差分图像绝对值(SAD) 光流法 目标分割 human motion sum of absolute differences (SAD) optical flow method object segmentation
  • 相关文献

参考文献9

  • 1Gavrila D. The visual analysis of human movement: a survey[J]. Computer Vision and Image Understanding, 1999,73(1) :82 - 98.
  • 2王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 3郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 4贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 5Koguta G, Drymona L, Everetta H R. Target detection, acquisition, and prosecution from an unmanned ground vehicle[C]// Unmanned Ground Vehicle Technology Ⅶ, Proceedings of SPIE. Orlando, FL, USA: [s. n.], 2005 : 560 - 568.
  • 6Hu Huixing, Tan Tieniu. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man, and Cybernetics-part C: Applications and Reviews, 2004,34 (3) : 334 - 352.
  • 7Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities[ J ].IEEE Transactions Pattern Analysis Machine Intelligent, 2000,22 : 809 - 830.
  • 8Horn B K P, Schunck B G. Determining optical flow [J]. Artificial Intelligence, 1981,17 : 185 - 203.
  • 9Milan S, Vaclav H, Roger B. Image processing, analysis, and machine vision[M]. Toronto: Thomson Learning, 2005.

二级参考文献162

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献355

同被引文献222

引证文献29

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部