摘要
SLAM(Simultaneous Localization and Mapping,同时定位与地图创建)可以看成同时估计机器人和障碍物位置的问题,SLAM应用于未知环境的的主要困难之一就是这两个估计问题之间的强耦合。围绕这个问题提出了融合SLAM这两个估计的协方差交叉优化算法,解决了SLAM常用滤波算法易受到数据相关性困扰的问题。
Simultaneous Localization and Mapping is the way to estimate the location of the robot and mapping at the same time. The main difficulty to use this way in an unknown environment is the strong coupling between the estimate of the robot and the landmarks. According to this, a covariance Intersection optimal algorithm is put forward, in order to solve the problem of data association in SLAM filter algorithm.
出处
《青岛科技大学学报(自然科学版)》
CAS
2008年第4期361-365,共5页
Journal of Qingdao University of Science and Technology:Natural Science Edition