摘要
文章研究了弱诱导空间的诱导I(L)拓扑空间,证明了(X,δ)是弱诱导空间(诱导空间)当且仅当(X,ω(δ))是弱诱导空间(诱导空间);II(L)(ω(δ))ω(IL(δ))以及EI(L)(ω(δ))=ω(EL(δ)),其中I为内弱诱导化函子,E为外弱诱导化函子.此外,给出了II(L)(ω(δ))≠ω(IL(δ))的具体例子.
In the paper, some research is launched on induced I ( L ) - topological spaces of weakly induced topological spaces. And it is proved that ( X, δ) is weakly induced topological spaces ( induced topological spaces ) if and only if ( X, ω ( δ ) ) is weakly induced topological spaces (induced topological spaces) , andⅡ(L)(ω(δ) ) belong to ω(IL(δ)) and EI(L) (ω(δ)) = ω(EL( δ) ) , I is the interior weakly induced-fiction functor and E is the exterior weakly induced - fiction functor. Moreover, An example is given II(L) ( ω (δ)) ≠ω(IL(δ)).
出处
《渭南师范学院学报》
2008年第5期7-10,共4页
Journal of Weinan Normal University
基金
国家自然科学基金资助项目(10271069)
渭南师范学院科研计划项目(08YKZ053)
关键词
诱导I(L)拓扑空间
弱诱导空间
弱诱导空间化
induced I(L) -topological spaces
wealdy induced topological spaces
weakly induced-fiction