期刊文献+

简单约束非线性方程组的射影尺度牛顿方法(英文)

An Affine Scaling Newton Method with a New Merit Function for Solving Bound-Constrained Nonlinear Systems
下载PDF
导出
摘要 基于射影尺度牛顿方法,本文使用新的势函数以取代原有的势函数,得到一类求解非线性方程组的数值算法.在合适的假设下,证明了算法的全局强收敛性和局部二次收敛速度.数值试验的结果说明了算法的有效性. This paper proposes an affine scaling Newton method with a new merit function for solving bound-constrained nonlinear equations. The global convergence and the quadratic local convergence properties of the proposed algorithm are established under the reasonable conditions. The numerical results are reported to show the effectiveness of the proposed algorithem .
作者 盛子宁
出处 《运筹学学报》 CSCD 北大核心 2008年第3期67-74,共8页 Operations Research Transactions
基金 Project of Shanghai Education Commission(06FZ035).
关键词 运筹学 射影尺度牛顿方法 势函数 约束非线性方程组 收敛性 Operations research, affine scaling Newton method, new merit function, bound-constrained nonlinear systems
  • 相关文献

参考文献8

  • 1Bellavia S., Macconi M. and Morini B. An affine scaling trust-region approach to boundconstrained nonlinear systems[J]. Applied Numerical Mathematics, 2003, 44: 257-280.
  • 2Bulteau J.P. and Vial J.Ph. Curvilinear path and trust region in unconstrained optimization, a convergence analysis[J]. Mathematical Programming Study, 1987, 30: 82-101.
  • 3Coleman T.F. and Li Y. An interior trust region approach for minimization subject to bounds[J]. SIAM J. Optimization, 1996, 6(2): 418-445.
  • 4Dennis J.E.Jr. and More J.J. Quasi-Newton methods, motivation and theory[J]. SIAM Rev., 1977, 19: 46-89.
  • 5Dennis J.E.Jr. and Schnabel R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Prentice-Hall Series in Computation; Mathematics, Englewood Cliffs. N J, 1983.
  • 6Floudas C.A., et.al. Handbook of Test Problems in Global Optimaization[M]. Kluwer Academic. Dordrecht,1999.
  • 7Zhu D. An interior point algorithm with nonmonotonic backtracking technique for linear constrained optimization[J]. J. of Computational and Applied Mathematics, 2003, 155: 285-305.
  • 8Zhu D. An Affine Scaling Trust Region Algorithm with Interior Backtracking Technique for Solving Bound-constrained Nonlinear Systems[J]. J. of Computational and Applied Mathematics, 2005, 184.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部