期刊文献+

基于α因子的复合材料弹性模量混合律模型 被引量:7

Mixed-mode of Elastic Modulus Composites Based on the α Factor
下载PDF
导出
摘要 在复合材料弹性模量预测的细观力学模型基础上,运用连续介质力学的方法,建立了一种新的混合律模型及其表达式,该模型根据最小二乘法求出了可表征不同制备方法获得的复合材料计算模型的比例因子α,并应用在颗粒增强复合材料的弹性模量分析中。为验证该模型的实用性,引用了文献试验数据进行了预测计算并进行了验证,与模型Reuss、Voigt、Tamura进行比较,结果表明:对于由SD制备方法获得的6066/SiC复合材料,当使用建立的α因子模型时,计算结果处在Voigt模型和Reuss模型的上、下限之间,其相对误差为Tamura模型的1/2。 A new mixed model and its equation have been developed for estimating the elastic modulus of composites based on the micro mechanics model and continuum mechanics theory. The model has been used to predict the elastic modulus of particle-reinforced composites. In the model, the α factor has been characterized based on least square method and experimental data. For verifying the model, the experimental data have been referred and used to calculate the elastic modulus of materials, which is prepared by spray deposition (SD) method. Results show that the value of elastic modulus is located between the upper limit of Voigt model and the lower limit of Reuss model, and the relative error for the new model is 1/2 of that for Tumura mode.
作者 卢平 刘佐民
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2008年第9期19-23,共5页 Journal of Wuhan University of Technology
基金 国家自然科学基金(50775168)
关键词 弹性模量 连续介质力学 复合材料 最小二乘法 elastic modulus continuum mechanics composite material least square method
  • 相关文献

参考文献6

  • 1Voigt W. Uber die Beziehung Zwischen den Beiden Elastizitatskonstanten Isotroper Korper[J]. Wied Ann, 1889,38:573-587.
  • 2Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatstheorie[J]. Mathematic and Mechanic, 1929, 9:49-58.
  • 3Tamura I, Tomota Y, Ozawa H. Strength and Ductility of Fe-Ni-C Alloys Composed of Austenite and Matensite with Various Strength[A]. Proceedings of the 3rd International Conference on Strength of Metals and Alloys[ C]. London: Institute of Met, als, 1973: 611-615.
  • 4Kalaprasad G, Joseph K. Theoretical Modeling of Tensile Properties of Short Sisal Fibre-reinforced Low-density Polyethylene Composites[J ]. Journal of Materials Science, 1997, 32 : 4261-4267.
  • 5田云德,秦世伦.复合材料等效弹性模量的改进混合律方法[J].西南交通大学学报,2005,40(6):783-787. 被引量:20
  • 6柏振海,黎文献,罗兵辉,王日初,张迎元.一种复合材料弹性模量的计算方法[J].中南大学学报(自然科学版),2006,37(3):438-443. 被引量:23

二级参考文献22

  • 1王耀先.单向复合材料弹性模量预测新式[J].玻璃钢/复合材料,1995(4):26-31. 被引量:9
  • 2吴人洁.金属基复合材料的现状与展望[J].金属学报,1997,33(1):78-84. 被引量:221
  • 3李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,2002.236-238.
  • 4Markworth A J,Saunders J H.A model of structure optimization for a functionally graded material[J].Mater Lett,1995,17(22):103-107.
  • 5Suresh S,Mortensen A.李守新译.功能梯度材料基础-制备及热机械行为[M].北京:国防工业出版社,2000.130-150.
  • 6秦世伦,Hitter K.连续体热-力学引论[M].成都:成都科技大学出版社,1998.239-370.
  • 7杜善义,王彪.复合材料细微观力学[M].北京:科学出版社,1997.42-51.
  • 8Clyne T W,Withers P J.An introduction to metal matrix composites[M].London:Cambridge University Press,1992.
  • 9Marur P R.An engineering approach for evaluating effective elastic moduli of particulate composites[J].Materials Letters,2004,58:3971-3975.
  • 10GB/T2105-91.金属材料杨氏模量、切变模量及泊松比测量方法(动力学法)[S].GB/T2105-91.

共引文献40

同被引文献43

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部