期刊文献+

基于有理函数插值的增量弹塑性分析

An incremental elasto-plastic analysis based on rational function interpolation
下载PDF
导出
摘要 结合弹塑性增量计算和有理函数插值的特点,研究了利用有理单元法解决二维弹塑性问题的算法。为了将其应用拓展到土体等弹塑性材料,分别采用Von-Mises和Drucker-Prager屈服准则作为调整积分点应力向量的依据,应用于两个平面问题的算例,拓宽了有理单元法的适用范围。 By considering the specialties of incremental elasto-plastic calculation and interpolation of rational function, an algorithm for two dimensional elasto-plastic analysis was presented based on rational element method. In order to make it applicable to calculate and analyze the elasto-plastic material such as soil, a plane strain problem was verified through the adjustment of stress on Hammer point based on the yield criteria of Von-Mises and Drucker-Prager. The applicable range of REM was enlarged through the research.
出处 《山东建筑大学学报》 2008年第4期339-343,共5页 Journal of Shandong Jianzhu University
基金 山东省自然科学基金资助项目(Z2007A03)
关键词 有理函数插值 弹塑性分析 屈服准则 子增量法 rational function interpolation elasto-plastic analysis yield criteria sub-increment method
  • 相关文献

参考文献7

二级参考文献28

  • 1王兆清,冯伟.Delaunay多边形单元的有理函数插值格式[J].力学季刊,2004,25(3):375-381. 被引量:16
  • 2范亚玲,张远高,陆明万.二维任意多边形有限单元[J].力学学报,1995,27(6):742-746. 被引量:20
  • 3Ghosh, S. Mallett R L. Voronoi Cell finite elements[J]. Computers & Structures, 1994, 50(1), 33-46.
  • 4Ghosh, S. Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method[J]. Comput Methods Appl Mech Engrg, 1995, 121, 373-409.
  • 5Ghosh S. , Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi Cell finite element method[J]. Int J Structures, 1995, 27-62.
  • 6Belikov V V, Ivanov V D, Kontorovich V K, Korytnik S A, Semenov A Y. The non-Sibson interpolation: a new method of interpolation of the values of a function on an arbitrary set of Doints[J]. Computational Mathematics and Mathematical Physics, 1997, 37(1) :9-15.
  • 7Belikov V V, Semenov A Y. Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation[J]. Applied Numerical Mathematics. 2000, 32:371-387.
  • 8Semenov A Y, Belikov V V. New non-Sibsonian interpolation on arbitrary system of points in Euclidean space[C]. In: 15^th IMACS World Congress. Vol.2, Numerical Mathematics, Wissen Techn Verlag, Berlin, 1997, 237-242.
  • 9Kokichi Sugihara. Surface interpolation based on new local coordinates[J]. Computer-Aided Design, 1999, 31:51-58.
  • 10Hisamoto Hiyoshi, Kokiehi Sugihara. Two generalizations of an interpolant based Voronoi diagrams[J]. International Journal of Shape Modeling, 1999, 5(2):219-231.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部