期刊文献+

求解边值问题的重心有理插值配点法 被引量:1

Barycentric rational interpolation method and its application in solving boundary value problems
下载PDF
导出
摘要 将计算区间采用等距节点离散,利用重心有理插值近似未知函数,建立未知函数各阶导数在计算节点上的微分矩阵,提出数值求解微分方程边值问题的重心有理插值配点法。采用重心有理插值配点法将微分方程及其边值条件离散为线性代数方程,数值求解代数方程得到未知函数在节点的函数值,进而利用微分矩阵可以得到未知函数的各阶导数值。数值算例表明,重心有理插值配点法具有计算公式简单、程序实施方便和计算精度高的优点。 The authors discrete computational interval by uniformly spaced points, using barycentric rational interpolation method to approximate the unknown function and constructing the differentiation matrices which is each derivative of the unknown function on the computational points. The barycentric rational interpolation collocation method (BRICM) is presented for solving boundary value problems of differential equation. The BRICM transforms differential equation and boundary value conditions into a set of algebraic equations system and uses numerical method solving the algebraic equation for the value of the unknown function at the points. The differentiation matrices are useful to have each derivative of the unknown function. The numerical examples demonstrate that the proposed numerical method have advantages of simple formulations, easy programming and high precision.
出处 《山东建筑大学学报》 2008年第4期344-349,共6页 Journal of Shandong Jianzhu University
基金 山东建筑大学科研基金项目(XN050103)
关键词 边值问题 重心有理插值 配点法 微分矩阵 boundary value problem barycentric rational interpolation collocation method differentiation matrix
  • 相关文献

参考文献10

  • 1[2]Young W,Bang K H.Finite element method using Matlab[M].USA:CRC,1996.
  • 2[3]Weidman A C,Reddy,S C.A matlab differentiation matrix suite[J].ACM Transactions on Mathematical Software,2000,26(4):465 -519.
  • 3[4]Trefethen L N.Spectral methods in Matlab[M].Philadelphia:SIAM,2000.
  • 4王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 5[6]Bert C W,Malik M.Differential quadrate method in computational mechanics:a review[J].Appled Mechanics Reviews,1996,49 (1):1 -27.
  • 6[7]Bermt J P,Baltensperger R,Mittelmann H D.Recent developments in barycentric rational interpolation,trends and applications in constructive approximation[A].In De Brain M G,D Mache H,Szabades J,eds.International series of numerical mathematics[C].Birkhauser:Verlag Basel,2005.27 -51.
  • 7[8]Berrut J P.Rational function for guaranteed and experimentally well conditioned global interpolation[J].Comput Math Applic,1988,15(1):1-16.
  • 8[9]Floater M S,Hormann K.Barycentric rational interpolation with no poles and high rates of approximation[J].Numerische Mathematik,2007,107(2):315 -331.
  • 9李淑萍,王兆清,唐炳涛.重心插值配点法求解初值问题[J].山东建筑大学学报,2007,22(6):481-485. 被引量:20
  • 10[11]Baltensperger R,Berrut J P,Dubey Y.The linear rational pseu-do-spectral method with preassigned poles[J].Numer Algorithms,2003,33 (1):53-63.

二级参考文献9

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2王兆清,李淑萍,唐炳涛.任意连续函数的多项式插值逼近[J].山东建筑大学学报,2007,22(2):158-162. 被引量:28
  • 3[2]Weideman,J A C,Reddy,S C.A Matlab differentiation matrix suite[J].ACM Transactions on Mathematical Software,2000,26(4):465-519.
  • 4[3]Trefethen L N.Spectral methods in Matlab[M].Philadelphia:SIAM,2000.
  • 5[5]Bert C W,Malik M.Differential quadrature method in computational mechanics:a review[J].Applied Mechanics Reviews,1996,49(1):1-27.
  • 6[6]Berrut J P,Trefethen L N.Barycentric Lagrange interpolation[J].SIAM Review,2004,46 (3):501-517.
  • 7[7]Berrut J P,Baltensperger R,Mittelmann H D.Recent developments in barycentric rational interpolation,Trends and Applications in Constructive Approximation[A].In De Bruin M G,D Mache H,Szabados J,eds.,International Series of Numerical Mathematics[C].Birkh(a)user:Verlag Basel,2005,151:27-51.
  • 8[8]Nicholas J H.The numerical stability of barycentric Lagrange interpolation[J].IMA Journal of Numerical Analysis,2004,24(4):547-556.
  • 9[9]Battles Z,Trefethen L N.An extension of MATLAB to continuous functions and operations[J].SIAM Journal of Science Computation,2004,25(5):1743-1770.

共引文献106

同被引文献20

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部