期刊文献+

磁性半导体/磁性d波超导结中的自旋极化输运 被引量:1

Spin-polarized transport in ferromagnetic semiconductor/ferromagnetic d-wave superconductor tunnel junction
原文传递
导出
摘要 通过求解磁性d波超导中的能隙与磁交换能的自恰方程,利用推广的Blonder-Tinkham-Klapwijk理论研究磁性半导体/磁性d波超导结中自旋极化准粒子输运系数与微分电导.计算表明:1)磁性d波超导结中的磁交换能h0可导致零偏压电导峰与能隙电导峰劈裂,劈裂的宽度为2h0;2)磁性半导体中的磁交换能hFS可使零偏压电导峰劈裂的峰值变低.而由能隙电导峰劈裂的两个子峰,当两种磁性材料的磁化方向平行时,右边的峰值随着hFS的变大而变高,左边的峰值变低,当两磁性材料的磁化方向反平行时,随hFS变大右边的峰值变低,左边的峰值变高. By solving a self-consistent equation for the d-wave superconducting gap and the magnetization, and applying an extended Blonder-Tinkham-Klapwijk approach, we study the spin-polarized quasiparticle transport coefficients and the differential conductance in ferromagnetic semiconductor/ferromagnetic d-wave superconductor junction. It is shown that ( 1 ) the exchange energy h0 in the ferromagnetic d-wave superconductor may make the zero-bias conductance peak and energy gap peak split into two peaks, and the energy difference between the two splitting peaks is equal to 2h0; (2) the exchange energy hFS in the ferromagnetic semiconductor can decrease the height of the two peaks resulting from splitting of the zero-bias conductance peak. For the splitting of the energy gap conductance peak, however, with hFS increased the left-hand peak is lowered and the righthand peak is raised in the parallel configuration, but the left-hand peak is raised and the right-hand peak is lowered in the antiparallel configuration.
作者 董正超
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第9期5937-5943,共7页 Acta Physica Sinica
基金 江苏省高校自然科学基金(批准号:05KJB140008) 江苏省"333工程"科研项目资助的课题~~
关键词 磁性半导体 磁性d波超导体 自旋极化输运 ferromagnetic semiconductor, ferromagnetic d-wave superconductor, spin-polarized transport
  • 相关文献

参考文献34

  • 1Radovan H, Fortune N A, Murphy T P, Hannalas S T, Palm E C, Tozer S W, Hall D 2003 Nature (London) 425 51.
  • 2Won H, Maki K, Haas S, Oeschler N, Weickert F, Gegenwart P 2004 Phys. Rev. B 69 180504(R).
  • 3Kakuyanagi K, Saitoh M, Kumagai K, Takashima S, Nohara M, Takagi H, Matsuda Y 2005 Phys. Rev. Lett. 94 047602.
  • 4Kumagai K, Saitoh M, Oyaizu T, Fumkawa Y, Takashima S, Nohara M, Takagi H, Matsuda Y 2006 Phys. Rev. Lett. 97 227002.
  • 5Saxena S S, Agarwal P, Grosche F M, Haselwimmer R K W, Steiner M J, Pugh E, Walker I R, Julian S R, Monthoux P, Lonzarich G G, Huxley A, Shelkin I, Braithwaite D, Flouquet J 2000 Nature (London) 406 587.
  • 6Pfleiderer C, Uhlarz M, Hayden S M, Volimer R, Lohneysen H V, Bernhoeft N R, Lonzarich G G 2001 Nature (London) 412 58.
  • 7Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouquet J, Brison J, Lhotel E, Paulsen C 2001 Nature (London) ,113 613.
  • 8Rourke P M C, Tanatar M A, Turel C S, Berdeklis J, Petrovic C, Wei J Y T 2005 Phys. Rev. Lett. 94 107005.
  • 9Kasahara Y, Nakajima Y, Izawa K, Matsuda Y, Behnia K, Shishido H, Settal R, Onuki Y 2005 Phys. Rev. B 72 214515.
  • 10WangQ, Hu C R, TingC S2006 Phys. Rev. B74214501.

二级参考文献1

共引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部