期刊文献+

Stokes问题Q_2-P_1混合元外推方法 被引量:2

Extrapolation of Q_2-P_1Mixed Finite Element Method For Stokes Problem
原文传递
导出
摘要 考虑Stokes问题的有限元解与精确解插值的Q2-P1混合元的渐近误差展开和分裂外推.首先利用积分恒等式技巧确定了微分方程精确解与有限元插值之间积分式的主项,其次再借助插值后处理和分裂外推技术,得到了比通常的误差估计提高两阶的收敛速度. The asymptotic error expansion and extrapolation between the finite element approximate solution and the exact solution of interpolation of Q2-P1 mixed finite element method for Stokes problem are considered. Firstly, the main term of the error between the exact solution and its finite element interpolation is determined through using integral identity technique. Secondly, two order higher convergence rate than the general error estimate is derived by using postprocessing technique and extrapolation.
机构地区 郑州大学数学系
出处 《数学的实践与认识》 CSCD 北大核心 2008年第17期66-75,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(10671184 10371113) 河南省高等学校创新人才培养工程基金
关键词 STOKES问题 混合元 后处理技术 外推 Stokes problem mixed finite element postprocessing technique extrapolation
  • 相关文献

参考文献8

  • 1石东洋,梁慧.一个新的非常规Hermite型各向异性矩形元的超收敛分析及外推[J].计算数学,2005,27(4):369-382. 被引量:75
  • 2林甲富,雷俊丽.Stokes方程组Hood-Taylor元的分裂外推[J].北京理工大学学报,2004,24(11):1020-1023. 被引量:2
  • 3朱起定,林群.有限元的超收敛理论[M].长沙:湖南科学技术出版社,1989.
  • 4Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations, Theory and Algorithms[M]. New York : Springer-Verlag, 1986.
  • 5Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. North-Holland: Amsterdam,1978.
  • 6Babuska I. The finite element methods with Lagrangian muhipliers[J].Numer Math, 1973,20(3):179-192.
  • 7Brezzi F. On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[J].RAIRO Anal Numer, 1974,8(2) : 129-151.
  • 8Chen S C, Shi D Y, Zhao Y C. Anisotropie interpolation and quasi-Wilson element for narrow quadrilateral meshes[J]. IMA J Numer Anal,2004,24(1):77-95.

二级参考文献19

  • 1朱起定 林群.有限元超收敛理论[M].长沙:湖南科学技术出版社,1989..
  • 2Zhou Aihui. Multi-parameter asymptotic error resolution of the mixed finite element method for the stokes problem[J]. Mathematical Modelling and Numerical Analysis, 1999,33(1):89-97.
  • 3Ciarlet P G. The finite element method for elliptic problem[M]. Amsterdam: North-Holland Press, 1978.
  • 4Bercovier M, Pironneu O. Error estimates for finite element method solution of the Stokes problem in the primitive variable[J]. Numer Math, 1979,35:211-224.
  • 5Girault V, Raviart P A. Finite element method for navier-stokes equation-theory and algorithms[M]. Berlin and Heidellberg: Springer-Verlag,1986.
  • 6P.G. Ciarlet, The Finite Element Method for Elliptic Problem, North-Holland, Amsterdam,1978.
  • 7S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag New York, Inc, 1998.
  • 8T. Apel, M. Dobrowolski, Anisotropic Interpolation with Application to the Finite Element Method, Computing, 47:3(1992), 277-293.
  • 9A. Zenisek, M. Vanmaele, The interpolation theory for narrow quadrilateral isoparametric finite elements, Numer. Math., 72:1(1995), 123-141.
  • 10T. Apel, G. Lue, Anisotropic mesh refinement in stabilized Galerkin methods, Numer.Math., 74:3(1996), 261-282.

共引文献74

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部