摘要
考虑Stokes问题的有限元解与精确解插值的Q2-P1混合元的渐近误差展开和分裂外推.首先利用积分恒等式技巧确定了微分方程精确解与有限元插值之间积分式的主项,其次再借助插值后处理和分裂外推技术,得到了比通常的误差估计提高两阶的收敛速度.
The asymptotic error expansion and extrapolation between the finite element approximate solution and the exact solution of interpolation of Q2-P1 mixed finite element method for Stokes problem are considered. Firstly, the main term of the error between the exact solution and its finite element interpolation is determined through using integral identity technique. Secondly, two order higher convergence rate than the general error estimate is derived by using postprocessing technique and extrapolation.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第17期66-75,共10页
Mathematics in Practice and Theory
基金
国家自然科学基金(10671184
10371113)
河南省高等学校创新人才培养工程基金
关键词
STOKES问题
混合元
后处理技术
外推
Stokes problem
mixed finite element
postprocessing technique
extrapolation