期刊文献+

B-(p,r)-不变凸性下广义分式规划的一个鞍点最优性准则

Saddle-Point Type Optimality Criteria for a Class of Generalized Fractional Programming with B-(p,r)-Invexity Functions
原文传递
导出
摘要 对于一类目标函数中有无限个分式的广义分式规划,给出一个不完全Lagrange函数,并利用已有的最优性必要条件,在B-(p,r)-不变凸性的条件下,证明了鞍点最优性准则. For a class of generalized fractional programming whose objective function is composed of infinite fractions, the saddle-point type optimality criteria are proven by using the existing necessary conditions, under the assumption of the class of B-(p,r)-invexity.
作者 童子双
出处 《数学的实践与认识》 CSCD 北大核心 2008年第17期132-137,共6页 Mathematics in Practice and Theory
基金 浙江省教育厅科研项目(20071063)
关键词 广义分式规划 不完全Lagrange函数 鞍点 B-(p r)-不变凸 generalized fractional programming incomplete lagrange function saddle-point B- (p ,r)-invexity
  • 相关文献

参考文献6

  • 1Antczak T. (p,r)-invex sets and function[J]. Journal Mathematical Analysis and Applications, 2001,263:355- 379.
  • 2Antczak T. On (p, r)-invexity-types nonlinear programming problems[J]. Journal Mathematical Analysis and Applications, 2001,264 : 382-397.
  • 3Antczak T. A class of B- (p, r) invex functions and mathematical programming [J]. Journal Mathematical Analysis and Applications, 2003,286 : 187-206.
  • 4Chandra S, Kumar V. Duality in fractional minimax programming[J].J Austral math Soc Ser A, 1995,58(1): 376 -386.
  • 5Liu J C, Wu C S. On minimax fractional optimality conditions with invexity[J]. Journal of Mathematical Analysis and Applications,1998,219(1) :1-35.
  • 6Bector C R. Duality in nonlinear fractional programming[J]. Z Operation Research, 1973,17 : 183-193.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部